furnace/extern/fftw/rdft/scalar/r2cf/hf_64.c
2022-05-31 03:24:29 -05:00

4105 lines
101 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:14 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */
/*
* This function contains 1038 FP additions, 644 FP multiplications,
* (or, 520 additions, 126 multiplications, 518 fused multiply/add),
* 190 stack variables, 15 constants, and 256 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Thr, T7Q, TcI, T7X;
E TcJ, T29, Tf8, Tf5, Thw, T87, TcN, T8u, TcQ, T5K, TfS, Tgc, ThX, Taq, Tdm;
E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Ths, T7B;
E TcF, T7I, TcG, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, Tfr, TfK, ThM;
E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thx, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm;
E ThC, T8V, TcY, T96, TcV, T4o, TfL, Tfu, ThN, T9w, Tdf, Tad, Td4, T6b, Tg9;
E TfV, ThY, TaF, Tdy, Tbm, Tdn, T4Q, ThJ, TfA, TfN, T9M, Tdh, Taf, Td8, T5h;
E ThI, TfF, TfO, Ta1, Tdi, Tag, Tdb, T6D, ThU, Tg1, Tgf, TaV, TdA, Tbo, Tdr;
E T74, ThT, Tg6, Tge, Tba, TdB, Tbp, Tdu;
{
E T1, TiT, T7, TiS, Te, T7a, Tk, T7c;
T1 = cr[0];
TiT = ci[0];
{
E T3, T6, T4, TiR, T2, T5;
T3 = cr[WS(rs, 32)];
T6 = ci[WS(rs, 32)];
T2 = W[62];
T4 = T2 * T3;
TiR = T2 * T6;
T5 = W[63];
T7 = FMA(T5, T6, T4);
TiS = FNMS(T5, T3, TiR);
}
{
E Ta, Td, Tb, T79, T9, Tc;
Ta = cr[WS(rs, 16)];
Td = ci[WS(rs, 16)];
T9 = W[30];
Tb = T9 * Ta;
T79 = T9 * Td;
Tc = W[31];
Te = FMA(Tc, Td, Tb);
T7a = FNMS(Tc, Ta, T79);
}
{
E Tg, Tj, Th, T7b, Tf, Ti;
Tg = cr[WS(rs, 48)];
Tj = ci[WS(rs, 48)];
Tf = W[94];
Th = Tf * Tg;
T7b = Tf * Tj;
Ti = W[95];
Tk = FMA(Ti, Tj, Th);
T7c = FNMS(Ti, Tg, T7b);
}
{
E T8, Tl, TjP, TjQ;
T8 = T1 + T7;
Tl = Te + Tk;
Tm = T8 + Tl;
TeM = T8 - Tl;
TjP = Te - Tk;
TjQ = TiT - TiS;
TjR = TjP + TjQ;
Tkl = TjQ - TjP;
}
{
E T78, T7d, TiQ, TiU;
T78 = T1 - T7;
T7d = T7a - T7c;
T7e = T78 - T7d;
TcA = T78 + T7d;
TiQ = T7a + T7c;
TiU = TiS + TiT;
TiV = TiQ + TiU;
Tjm = TiU - TiQ;
}
}
{
E T1l, T7S, T1E, T7O, T1r, T7U, T1y, T7M;
{
E T1h, T1k, T1i, T7R, T1g, T1j;
T1h = cr[WS(rs, 60)];
T1k = ci[WS(rs, 60)];
T1g = W[118];
T1i = T1g * T1h;
T7R = T1g * T1k;
T1j = W[119];
T1l = FMA(T1j, T1k, T1i);
T7S = FNMS(T1j, T1h, T7R);
}
{
E T1A, T1D, T1B, T7N, T1z, T1C;
T1A = cr[WS(rs, 44)];
T1D = ci[WS(rs, 44)];
T1z = W[86];
T1B = T1z * T1A;
T7N = T1z * T1D;
T1C = W[87];
T1E = FMA(T1C, T1D, T1B);
T7O = FNMS(T1C, T1A, T7N);
}
{
E T1n, T1q, T1o, T7T, T1m, T1p;
T1n = cr[WS(rs, 28)];
T1q = ci[WS(rs, 28)];
T1m = W[54];
T1o = T1m * T1n;
T7T = T1m * T1q;
T1p = W[55];
T1r = FMA(T1p, T1q, T1o);
T7U = FNMS(T1p, T1n, T7T);
}
{
E T1u, T1x, T1v, T7L, T1t, T1w;
T1u = cr[WS(rs, 12)];
T1x = ci[WS(rs, 12)];
T1t = W[22];
T1v = T1t * T1u;
T7L = T1t * T1x;
T1w = W[23];
T1y = FMA(T1w, T1x, T1v);
T7M = FNMS(T1w, T1u, T7L);
}
{
E T1s, T1F, TeX, TeY;
T1s = T1l + T1r;
T1F = T1y + T1E;
T1G = T1s + T1F;
TeW = T1s - T1F;
TeX = T7S + T7U;
TeY = T7M + T7O;
TeZ = TeX - TeY;
Thr = TeX + TeY;
}
{
E T7K, T7P, T7V, T7W;
T7K = T1l - T1r;
T7P = T7M - T7O;
T7Q = T7K - T7P;
TcI = T7K + T7P;
T7V = T7S - T7U;
T7W = T1y - T1E;
T7X = T7V + T7W;
TcJ = T7V - T7W;
}
}
{
E T1O, T8p, T27, T85, T1U, T8r, T21, T83;
{
E T1K, T1N, T1L, T8o, T1J, T1M;
T1K = cr[WS(rs, 2)];
T1N = ci[WS(rs, 2)];
T1J = W[2];
T1L = T1J * T1K;
T8o = T1J * T1N;
T1M = W[3];
T1O = FMA(T1M, T1N, T1L);
T8p = FNMS(T1M, T1K, T8o);
}
{
E T23, T26, T24, T84, T22, T25;
T23 = cr[WS(rs, 50)];
T26 = ci[WS(rs, 50)];
T22 = W[98];
T24 = T22 * T23;
T84 = T22 * T26;
T25 = W[99];
T27 = FMA(T25, T26, T24);
T85 = FNMS(T25, T23, T84);
}
{
E T1Q, T1T, T1R, T8q, T1P, T1S;
T1Q = cr[WS(rs, 34)];
T1T = ci[WS(rs, 34)];
T1P = W[66];
T1R = T1P * T1Q;
T8q = T1P * T1T;
T1S = W[67];
T1U = FMA(T1S, T1T, T1R);
T8r = FNMS(T1S, T1Q, T8q);
}
{
E T1X, T20, T1Y, T82, T1W, T1Z;
T1X = cr[WS(rs, 18)];
T20 = ci[WS(rs, 18)];
T1W = W[34];
T1Y = T1W * T1X;
T82 = T1W * T20;
T1Z = W[35];
T21 = FMA(T1Z, T20, T1Y);
T83 = FNMS(T1Z, T1X, T82);
}
{
E T1V, T28, Tf3, Tf4;
T1V = T1O + T1U;
T28 = T21 + T27;
T29 = T1V + T28;
Tf8 = T1V - T28;
Tf3 = T8p + T8r;
Tf4 = T83 + T85;
Tf5 = Tf3 - Tf4;
Thw = Tf3 + Tf4;
}
{
E T81, T86, T8s, T8t;
T81 = T1O - T1U;
T86 = T83 - T85;
T87 = T81 - T86;
TcN = T81 + T86;
T8s = T8p - T8r;
T8t = T21 - T27;
T8u = T8s + T8t;
TcQ = T8s - T8t;
}
}
{
E T5p, Tbf, T5I, Tao, T5v, Tbh, T5C, Tam;
{
E T5l, T5o, T5m, Tbe, T5k, T5n;
T5l = cr[WS(rs, 63)];
T5o = ci[WS(rs, 63)];
T5k = W[124];
T5m = T5k * T5l;
Tbe = T5k * T5o;
T5n = W[125];
T5p = FMA(T5n, T5o, T5m);
Tbf = FNMS(T5n, T5l, Tbe);
}
{
E T5E, T5H, T5F, Tan, T5D, T5G;
T5E = cr[WS(rs, 47)];
T5H = ci[WS(rs, 47)];
T5D = W[92];
T5F = T5D * T5E;
Tan = T5D * T5H;
T5G = W[93];
T5I = FMA(T5G, T5H, T5F);
Tao = FNMS(T5G, T5E, Tan);
}
{
E T5r, T5u, T5s, Tbg, T5q, T5t;
T5r = cr[WS(rs, 31)];
T5u = ci[WS(rs, 31)];
T5q = W[60];
T5s = T5q * T5r;
Tbg = T5q * T5u;
T5t = W[61];
T5v = FMA(T5t, T5u, T5s);
Tbh = FNMS(T5t, T5r, Tbg);
}
{
E T5y, T5B, T5z, Tal, T5x, T5A;
T5y = cr[WS(rs, 15)];
T5B = ci[WS(rs, 15)];
T5x = W[28];
T5z = T5x * T5y;
Tal = T5x * T5B;
T5A = W[29];
T5C = FMA(T5A, T5B, T5z);
Tam = FNMS(T5A, T5y, Tal);
}
{
E T5w, T5J, Tga, Tgb;
T5w = T5p + T5v;
T5J = T5C + T5I;
T5K = T5w + T5J;
TfS = T5w - T5J;
Tga = Tbf + Tbh;
Tgb = Tam + Tao;
Tgc = Tga - Tgb;
ThX = Tga + Tgb;
}
{
E Tak, Tap, Tbd, Tbi;
Tak = T5p - T5v;
Tap = Tam - Tao;
Taq = Tak - Tap;
Tdm = Tak + Tap;
Tbd = T5I - T5C;
Tbi = Tbf - Tbh;
Tbj = Tbd - Tbi;
Tdx = Tbi + Tbd;
}
}
{
E Ts, T7h, TL, T7q, Ty, T7j, TF, T7o;
{
E To, Tr, Tp, T7g, Tn, Tq;
To = cr[WS(rs, 8)];
Tr = ci[WS(rs, 8)];
Tn = W[14];
Tp = Tn * To;
T7g = Tn * Tr;
Tq = W[15];
Ts = FMA(Tq, Tr, Tp);
T7h = FNMS(Tq, To, T7g);
}
{
E TH, TK, TI, T7p, TG, TJ;
TH = cr[WS(rs, 24)];
TK = ci[WS(rs, 24)];
TG = W[46];
TI = TG * TH;
T7p = TG * TK;
TJ = W[47];
TL = FMA(TJ, TK, TI);
T7q = FNMS(TJ, TH, T7p);
}
{
E Tu, Tx, Tv, T7i, Tt, Tw;
Tu = cr[WS(rs, 40)];
Tx = ci[WS(rs, 40)];
Tt = W[78];
Tv = Tt * Tu;
T7i = Tt * Tx;
Tw = W[79];
Ty = FMA(Tw, Tx, Tv);
T7j = FNMS(Tw, Tu, T7i);
}
{
E TB, TE, TC, T7n, TA, TD;
TB = cr[WS(rs, 56)];
TE = ci[WS(rs, 56)];
TA = W[110];
TC = TA * TB;
T7n = TA * TE;
TD = W[111];
TF = FMA(TD, TE, TC);
T7o = FNMS(TD, TB, T7n);
}
{
E Tz, TM, TeN, TeO;
Tz = Ts + Ty;
TM = TF + TL;
TN = Tz + TM;
Tjl = Tz - TM;
TeN = T7o + T7q;
TeO = T7h + T7j;
TeP = TeN - TeO;
TiP = TeO + TeN;
}
{
E T7f, T7k, T7m, T7r;
T7f = Ts - Ty;
T7k = T7h - T7j;
T7l = T7f - T7k;
TcB = T7f + T7k;
T7m = TF - TL;
T7r = T7o - T7q;
T7s = T7m + T7r;
TcC = T7m - T7r;
}
}
{
E TU, T7D, T1d, T7z, T10, T7F, T17, T7x;
{
E TQ, TT, TR, T7C, TP, TS;
TQ = cr[WS(rs, 4)];
TT = ci[WS(rs, 4)];
TP = W[6];
TR = TP * TQ;
T7C = TP * TT;
TS = W[7];
TU = FMA(TS, TT, TR);
T7D = FNMS(TS, TQ, T7C);
}
{
E T19, T1c, T1a, T7y, T18, T1b;
T19 = cr[WS(rs, 52)];
T1c = ci[WS(rs, 52)];
T18 = W[102];
T1a = T18 * T19;
T7y = T18 * T1c;
T1b = W[103];
T1d = FMA(T1b, T1c, T1a);
T7z = FNMS(T1b, T19, T7y);
}
{
E TW, TZ, TX, T7E, TV, TY;
TW = cr[WS(rs, 36)];
TZ = ci[WS(rs, 36)];
TV = W[70];
TX = TV * TW;
T7E = TV * TZ;
TY = W[71];
T10 = FMA(TY, TZ, TX);
T7F = FNMS(TY, TW, T7E);
}
{
E T13, T16, T14, T7w, T12, T15;
T13 = cr[WS(rs, 20)];
T16 = ci[WS(rs, 20)];
T12 = W[38];
T14 = T12 * T13;
T7w = T12 * T16;
T15 = W[39];
T17 = FMA(T15, T16, T14);
T7x = FNMS(T15, T13, T7w);
}
{
E T11, T1e, TeS, TeT;
T11 = TU + T10;
T1e = T17 + T1d;
T1f = T11 + T1e;
TeR = T11 - T1e;
TeS = T7D + T7F;
TeT = T7x + T7z;
TeU = TeS - TeT;
Ths = TeS + TeT;
}
{
E T7v, T7A, T7G, T7H;
T7v = TU - T10;
T7A = T7x - T7z;
T7B = T7v - T7A;
TcF = T7v + T7A;
T7G = T7D - T7F;
T7H = T17 - T1d;
T7I = T7G + T7H;
TcG = T7G - T7H;
}
}
{
E T2H, T8Y, T30, T8E, T2N, T90, T2U, T8C;
{
E T2D, T2G, T2E, T8X, T2C, T2F;
T2D = cr[WS(rs, 62)];
T2G = ci[WS(rs, 62)];
T2C = W[122];
T2E = T2C * T2D;
T8X = T2C * T2G;
T2F = W[123];
T2H = FMA(T2F, T2G, T2E);
T8Y = FNMS(T2F, T2D, T8X);
}
{
E T2W, T2Z, T2X, T8D, T2V, T2Y;
T2W = cr[WS(rs, 46)];
T2Z = ci[WS(rs, 46)];
T2V = W[90];
T2X = T2V * T2W;
T8D = T2V * T2Z;
T2Y = W[91];
T30 = FMA(T2Y, T2Z, T2X);
T8E = FNMS(T2Y, T2W, T8D);
}
{
E T2J, T2M, T2K, T8Z, T2I, T2L;
T2J = cr[WS(rs, 30)];
T2M = ci[WS(rs, 30)];
T2I = W[58];
T2K = T2I * T2J;
T8Z = T2I * T2M;
T2L = W[59];
T2N = FMA(T2L, T2M, T2K);
T90 = FNMS(T2L, T2J, T8Z);
}
{
E T2Q, T2T, T2R, T8B, T2P, T2S;
T2Q = cr[WS(rs, 14)];
T2T = ci[WS(rs, 14)];
T2P = W[26];
T2R = T2P * T2Q;
T8B = T2P * T2T;
T2S = W[27];
T2U = FMA(T2S, T2T, T2R);
T8C = FNMS(T2S, T2Q, T8B);
}
{
E T2O, T31, Tfe, Tff;
T2O = T2H + T2N;
T31 = T2U + T30;
T32 = T2O + T31;
Tfj = T2O - T31;
Tfe = T8Y + T90;
Tff = T8C + T8E;
Tfg = Tfe - Tff;
ThB = Tfe + Tff;
}
{
E T8A, T8F, T91, T92;
T8A = T2H - T2N;
T8F = T8C - T8E;
T8G = T8A - T8F;
TcU = T8A + T8F;
T91 = T8Y - T90;
T92 = T2U - T30;
T93 = T91 + T92;
TcX = T91 - T92;
}
}
{
E T3C, Ta5, T3V, T9f, T3I, Ta7, T3P, T9d;
{
E T3y, T3B, T3z, Ta4, T3x, T3A;
T3y = cr[WS(rs, 1)];
T3B = ci[WS(rs, 1)];
T3x = W[0];
T3z = T3x * T3y;
Ta4 = T3x * T3B;
T3A = W[1];
T3C = FMA(T3A, T3B, T3z);
Ta5 = FNMS(T3A, T3y, Ta4);
}
{
E T3R, T3U, T3S, T9e, T3Q, T3T;
T3R = cr[WS(rs, 49)];
T3U = ci[WS(rs, 49)];
T3Q = W[96];
T3S = T3Q * T3R;
T9e = T3Q * T3U;
T3T = W[97];
T3V = FMA(T3T, T3U, T3S);
T9f = FNMS(T3T, T3R, T9e);
}
{
E T3E, T3H, T3F, Ta6, T3D, T3G;
T3E = cr[WS(rs, 33)];
T3H = ci[WS(rs, 33)];
T3D = W[64];
T3F = T3D * T3E;
Ta6 = T3D * T3H;
T3G = W[65];
T3I = FMA(T3G, T3H, T3F);
Ta7 = FNMS(T3G, T3E, Ta6);
}
{
E T3L, T3O, T3M, T9c, T3K, T3N;
T3L = cr[WS(rs, 17)];
T3O = ci[WS(rs, 17)];
T3K = W[32];
T3M = T3K * T3L;
T9c = T3K * T3O;
T3N = W[33];
T3P = FMA(T3N, T3O, T3M);
T9d = FNMS(T3N, T3L, T9c);
}
{
E T3J, T3W, TfI, TfJ;
T3J = T3C + T3I;
T3W = T3P + T3V;
T3X = T3J + T3W;
Tfr = T3J - T3W;
TfI = Ta5 + Ta7;
TfJ = T9d + T9f;
TfK = TfI - TfJ;
ThM = TfI + TfJ;
}
{
E T9b, T9g, Ta8, Ta9;
T9b = T3C - T3I;
T9g = T9d - T9f;
T9h = T9b - T9g;
Td3 = T9b + T9g;
Ta8 = Ta5 - Ta7;
Ta9 = T3P - T3V;
Taa = Ta8 + Ta9;
Tde = Ta8 - Ta9;
}
}
{
E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h;
{
E T2b, T2e, T2c, T89, T2a, T2d;
T2b = cr[WS(rs, 10)];
T2e = ci[WS(rs, 10)];
T2a = W[18];
T2c = T2a * T2b;
T89 = T2a * T2e;
T2d = W[19];
T2f = FMA(T2d, T2e, T2c);
T8a = FNMS(T2d, T2b, T89);
}
{
E T2u, T2x, T2v, T8i, T2t, T2w;
T2u = cr[WS(rs, 26)];
T2x = ci[WS(rs, 26)];
T2t = W[50];
T2v = T2t * T2u;
T8i = T2t * T2x;
T2w = W[51];
T2y = FMA(T2w, T2x, T2v);
T8j = FNMS(T2w, T2u, T8i);
}
{
E T2h, T2k, T2i, T8b, T2g, T2j;
T2h = cr[WS(rs, 42)];
T2k = ci[WS(rs, 42)];
T2g = W[82];
T2i = T2g * T2h;
T8b = T2g * T2k;
T2j = W[83];
T2l = FMA(T2j, T2k, T2i);
T8c = FNMS(T2j, T2h, T8b);
}
{
E T2o, T2r, T2p, T8g, T2n, T2q;
T2o = cr[WS(rs, 58)];
T2r = ci[WS(rs, 58)];
T2n = W[114];
T2p = T2n * T2o;
T8g = T2n * T2r;
T2q = W[115];
T2s = FMA(T2q, T2r, T2p);
T8h = FNMS(T2q, T2o, T8g);
}
{
E T2m, T2z, Tf9, Tfa;
T2m = T2f + T2l;
T2z = T2s + T2y;
T2A = T2m + T2z;
Tf6 = T2m - T2z;
Tf9 = T8h + T8j;
Tfa = T8a + T8c;
Tfb = Tf9 - Tfa;
Thx = Tfa + Tf9;
{
E T8e, T8v, T8l, T8w;
{
E T88, T8d, T8f, T8k;
T88 = T2f - T2l;
T8d = T8a - T8c;
T8e = T88 - T8d;
T8v = T88 + T8d;
T8f = T2s - T2y;
T8k = T8h - T8j;
T8l = T8f + T8k;
T8w = T8k - T8f;
}
T8m = T8e + T8l;
TcR = T8l - T8e;
T8x = T8v + T8w;
TcO = T8v - T8w;
}
}
}
{
E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q;
{
E T34, T37, T35, T8I, T33, T36;
T34 = cr[WS(rs, 6)];
T37 = ci[WS(rs, 6)];
T33 = W[10];
T35 = T33 * T34;
T8I = T33 * T37;
T36 = W[11];
T38 = FMA(T36, T37, T35);
T8J = FNMS(T36, T34, T8I);
}
{
E T3n, T3q, T3o, T8R, T3m, T3p;
T3n = cr[WS(rs, 22)];
T3q = ci[WS(rs, 22)];
T3m = W[42];
T3o = T3m * T3n;
T8R = T3m * T3q;
T3p = W[43];
T3r = FMA(T3p, T3q, T3o);
T8S = FNMS(T3p, T3n, T8R);
}
{
E T3a, T3d, T3b, T8K, T39, T3c;
T3a = cr[WS(rs, 38)];
T3d = ci[WS(rs, 38)];
T39 = W[74];
T3b = T39 * T3a;
T8K = T39 * T3d;
T3c = W[75];
T3e = FMA(T3c, T3d, T3b);
T8L = FNMS(T3c, T3a, T8K);
}
{
E T3h, T3k, T3i, T8P, T3g, T3j;
T3h = cr[WS(rs, 54)];
T3k = ci[WS(rs, 54)];
T3g = W[106];
T3i = T3g * T3h;
T8P = T3g * T3k;
T3j = W[107];
T3l = FMA(T3j, T3k, T3i);
T8Q = FNMS(T3j, T3h, T8P);
}
{
E T3f, T3s, Tfk, Tfl;
T3f = T38 + T3e;
T3s = T3l + T3r;
T3t = T3f + T3s;
Tfh = T3f - T3s;
Tfk = T8Q + T8S;
Tfl = T8J + T8L;
Tfm = Tfk - Tfl;
ThC = Tfl + Tfk;
{
E T8N, T94, T8U, T95;
{
E T8H, T8M, T8O, T8T;
T8H = T38 - T3e;
T8M = T8J - T8L;
T8N = T8H - T8M;
T94 = T8H + T8M;
T8O = T3l - T3r;
T8T = T8Q - T8S;
T8U = T8O + T8T;
T95 = T8T - T8O;
}
T8V = T8N + T8U;
TcY = T8U - T8N;
T96 = T94 + T95;
TcV = T94 - T95;
}
}
}
{
E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r;
{
E T3Z, T42, T40, T9j, T3Y, T41;
T3Z = cr[WS(rs, 9)];
T42 = ci[WS(rs, 9)];
T3Y = W[16];
T40 = T3Y * T3Z;
T9j = T3Y * T42;
T41 = W[17];
T43 = FMA(T41, T42, T40);
T9k = FNMS(T41, T3Z, T9j);
}
{
E T4i, T4l, T4j, T9s, T4h, T4k;
T4i = cr[WS(rs, 25)];
T4l = ci[WS(rs, 25)];
T4h = W[48];
T4j = T4h * T4i;
T9s = T4h * T4l;
T4k = W[49];
T4m = FMA(T4k, T4l, T4j);
T9t = FNMS(T4k, T4i, T9s);
}
{
E T45, T48, T46, T9l, T44, T47;
T45 = cr[WS(rs, 41)];
T48 = ci[WS(rs, 41)];
T44 = W[80];
T46 = T44 * T45;
T9l = T44 * T48;
T47 = W[81];
T49 = FMA(T47, T48, T46);
T9m = FNMS(T47, T45, T9l);
}
{
E T4c, T4f, T4d, T9q, T4b, T4e;
T4c = cr[WS(rs, 57)];
T4f = ci[WS(rs, 57)];
T4b = W[112];
T4d = T4b * T4c;
T9q = T4b * T4f;
T4e = W[113];
T4g = FMA(T4e, T4f, T4d);
T9r = FNMS(T4e, T4c, T9q);
}
{
E T4a, T4n, Tfs, Tft;
T4a = T43 + T49;
T4n = T4g + T4m;
T4o = T4a + T4n;
TfL = T4a - T4n;
Tfs = T9r + T9t;
Tft = T9k + T9m;
Tfu = Tfs - Tft;
ThN = Tft + Tfs;
{
E T9o, Tab, T9v, Tac;
{
E T9i, T9n, T9p, T9u;
T9i = T43 - T49;
T9n = T9k - T9m;
T9o = T9i - T9n;
Tab = T9i + T9n;
T9p = T4g - T4m;
T9u = T9r - T9t;
T9v = T9p + T9u;
Tac = T9u - T9p;
}
T9w = T9o + T9v;
Tdf = T9v - T9o;
Tad = Tab + Tac;
Td4 = Tab - Tac;
}
}
}
{
E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA;
{
E T5M, T5P, T5N, Tas, T5L, T5O;
T5M = cr[WS(rs, 7)];
T5P = ci[WS(rs, 7)];
T5L = W[12];
T5N = T5L * T5M;
Tas = T5L * T5P;
T5O = W[13];
T5Q = FMA(T5O, T5P, T5N);
Tat = FNMS(T5O, T5M, Tas);
}
{
E T65, T68, T66, TaB, T64, T67;
T65 = cr[WS(rs, 23)];
T68 = ci[WS(rs, 23)];
T64 = W[44];
T66 = T64 * T65;
TaB = T64 * T68;
T67 = W[45];
T69 = FMA(T67, T68, T66);
TaC = FNMS(T67, T65, TaB);
}
{
E T5S, T5V, T5T, Tau, T5R, T5U;
T5S = cr[WS(rs, 39)];
T5V = ci[WS(rs, 39)];
T5R = W[76];
T5T = T5R * T5S;
Tau = T5R * T5V;
T5U = W[77];
T5W = FMA(T5U, T5V, T5T);
Tav = FNMS(T5U, T5S, Tau);
}
{
E T5Z, T62, T60, Taz, T5Y, T61;
T5Z = cr[WS(rs, 55)];
T62 = ci[WS(rs, 55)];
T5Y = W[108];
T60 = T5Y * T5Z;
Taz = T5Y * T62;
T61 = W[109];
T63 = FMA(T61, T62, T60);
TaA = FNMS(T61, T5Z, Taz);
}
{
E T5X, T6a, TfT, TfU;
T5X = T5Q + T5W;
T6a = T63 + T69;
T6b = T5X + T6a;
Tg9 = T6a - T5X;
TfT = TaA + TaC;
TfU = Tat + Tav;
TfV = TfT - TfU;
ThY = TfU + TfT;
{
E Tax, Tbl, TaE, Tbk;
{
E Tar, Taw, Tay, TaD;
Tar = T5Q - T5W;
Taw = Tat - Tav;
Tax = Tar - Taw;
Tbl = Tar + Taw;
Tay = T63 - T69;
TaD = TaA - TaC;
TaE = Tay + TaD;
Tbk = Tay - TaD;
}
TaF = Tax + TaE;
Tdy = TaE - Tax;
Tbm = Tbk - Tbl;
Tdn = Tbl + Tbk;
}
}
}
{
E T4v, T9G, T4O, T9C, T4B, T9I, T4I, T9A;
{
E T4r, T4u, T4s, T9F, T4q, T4t;
T4r = cr[WS(rs, 5)];
T4u = ci[WS(rs, 5)];
T4q = W[8];
T4s = T4q * T4r;
T9F = T4q * T4u;
T4t = W[9];
T4v = FMA(T4t, T4u, T4s);
T9G = FNMS(T4t, T4r, T9F);
}
{
E T4K, T4N, T4L, T9B, T4J, T4M;
T4K = cr[WS(rs, 53)];
T4N = ci[WS(rs, 53)];
T4J = W[104];
T4L = T4J * T4K;
T9B = T4J * T4N;
T4M = W[105];
T4O = FMA(T4M, T4N, T4L);
T9C = FNMS(T4M, T4K, T9B);
}
{
E T4x, T4A, T4y, T9H, T4w, T4z;
T4x = cr[WS(rs, 37)];
T4A = ci[WS(rs, 37)];
T4w = W[72];
T4y = T4w * T4x;
T9H = T4w * T4A;
T4z = W[73];
T4B = FMA(T4z, T4A, T4y);
T9I = FNMS(T4z, T4x, T9H);
}
{
E T4E, T4H, T4F, T9z, T4D, T4G;
T4E = cr[WS(rs, 21)];
T4H = ci[WS(rs, 21)];
T4D = W[40];
T4F = T4D * T4E;
T9z = T4D * T4H;
T4G = W[41];
T4I = FMA(T4G, T4H, T4F);
T9A = FNMS(T4G, T4E, T9z);
}
{
E T4C, T4P, Tfw, Tfx, Tfy, Tfz;
T4C = T4v + T4B;
T4P = T4I + T4O;
Tfw = T4C - T4P;
Tfx = T9G + T9I;
Tfy = T9A + T9C;
Tfz = Tfx - Tfy;
T4Q = T4C + T4P;
ThJ = Tfx + Tfy;
TfA = Tfw - Tfz;
TfN = Tfw + Tfz;
}
{
E T9E, Td6, T9L, Td7;
{
E T9y, T9D, T9J, T9K;
T9y = T4v - T4B;
T9D = T9A - T9C;
T9E = T9y - T9D;
Td6 = T9y + T9D;
T9J = T9G - T9I;
T9K = T4I - T4O;
T9L = T9J + T9K;
Td7 = T9J - T9K;
}
T9M = FNMS(KP414213562, T9L, T9E);
Tdh = FNMS(KP414213562, Td6, Td7);
Taf = FMA(KP414213562, T9E, T9L);
Td8 = FMA(KP414213562, Td7, Td6);
}
}
{
E T4W, T9V, T5f, T9R, T52, T9X, T59, T9P;
{
E T4S, T4V, T4T, T9U, T4R, T4U;
T4S = cr[WS(rs, 61)];
T4V = ci[WS(rs, 61)];
T4R = W[120];
T4T = T4R * T4S;
T9U = T4R * T4V;
T4U = W[121];
T4W = FMA(T4U, T4V, T4T);
T9V = FNMS(T4U, T4S, T9U);
}
{
E T5b, T5e, T5c, T9Q, T5a, T5d;
T5b = cr[WS(rs, 45)];
T5e = ci[WS(rs, 45)];
T5a = W[88];
T5c = T5a * T5b;
T9Q = T5a * T5e;
T5d = W[89];
T5f = FMA(T5d, T5e, T5c);
T9R = FNMS(T5d, T5b, T9Q);
}
{
E T4Y, T51, T4Z, T9W, T4X, T50;
T4Y = cr[WS(rs, 29)];
T51 = ci[WS(rs, 29)];
T4X = W[56];
T4Z = T4X * T4Y;
T9W = T4X * T51;
T50 = W[57];
T52 = FMA(T50, T51, T4Z);
T9X = FNMS(T50, T4Y, T9W);
}
{
E T55, T58, T56, T9O, T54, T57;
T55 = cr[WS(rs, 13)];
T58 = ci[WS(rs, 13)];
T54 = W[24];
T56 = T54 * T55;
T9O = T54 * T58;
T57 = W[25];
T59 = FMA(T57, T58, T56);
T9P = FNMS(T57, T55, T9O);
}
{
E T53, T5g, TfB, TfC, TfD, TfE;
T53 = T4W + T52;
T5g = T59 + T5f;
TfB = T53 - T5g;
TfC = T9V + T9X;
TfD = T9P + T9R;
TfE = TfC - TfD;
T5h = T53 + T5g;
ThI = TfC + TfD;
TfF = TfB + TfE;
TfO = TfE - TfB;
}
{
E T9T, Td9, Ta0, Tda;
{
E T9N, T9S, T9Y, T9Z;
T9N = T4W - T52;
T9S = T9P - T9R;
T9T = T9N - T9S;
Td9 = T9N + T9S;
T9Y = T9V - T9X;
T9Z = T59 - T5f;
Ta0 = T9Y + T9Z;
Tda = T9Y - T9Z;
}
Ta1 = FMA(KP414213562, Ta0, T9T);
Tdi = FMA(KP414213562, Td9, Tda);
Tag = FNMS(KP414213562, T9T, Ta0);
Tdb = FNMS(KP414213562, Tda, Td9);
}
}
{
E T6i, TaQ, T6B, TaL, T6o, TaS, T6v, TaJ;
{
E T6e, T6h, T6f, TaP, T6d, T6g;
T6e = cr[WS(rs, 3)];
T6h = ci[WS(rs, 3)];
T6d = W[4];
T6f = T6d * T6e;
TaP = T6d * T6h;
T6g = W[5];
T6i = FMA(T6g, T6h, T6f);
TaQ = FNMS(T6g, T6e, TaP);
}
{
E T6x, T6A, T6y, TaK, T6w, T6z;
T6x = cr[WS(rs, 51)];
T6A = ci[WS(rs, 51)];
T6w = W[100];
T6y = T6w * T6x;
TaK = T6w * T6A;
T6z = W[101];
T6B = FMA(T6z, T6A, T6y);
TaL = FNMS(T6z, T6x, TaK);
}
{
E T6k, T6n, T6l, TaR, T6j, T6m;
T6k = cr[WS(rs, 35)];
T6n = ci[WS(rs, 35)];
T6j = W[68];
T6l = T6j * T6k;
TaR = T6j * T6n;
T6m = W[69];
T6o = FMA(T6m, T6n, T6l);
TaS = FNMS(T6m, T6k, TaR);
}
{
E T6r, T6u, T6s, TaI, T6q, T6t;
T6r = cr[WS(rs, 19)];
T6u = ci[WS(rs, 19)];
T6q = W[36];
T6s = T6q * T6r;
TaI = T6q * T6u;
T6t = W[37];
T6v = FMA(T6t, T6u, T6s);
TaJ = FNMS(T6t, T6r, TaI);
}
{
E T6p, T6C, TfX, TfY, TfZ, Tg0;
T6p = T6i + T6o;
T6C = T6v + T6B;
TfX = T6p - T6C;
TfY = TaQ + TaS;
TfZ = TaJ + TaL;
Tg0 = TfY - TfZ;
T6D = T6p + T6C;
ThU = TfY + TfZ;
Tg1 = TfX - Tg0;
Tgf = TfX + Tg0;
}
{
E TaN, Tdp, TaU, Tdq;
{
E TaH, TaM, TaO, TaT;
TaH = T6i - T6o;
TaM = TaJ - TaL;
TaN = TaH - TaM;
Tdp = TaH + TaM;
TaO = T6B - T6v;
TaT = TaQ - TaS;
TaU = TaO - TaT;
Tdq = TaT + TaO;
}
TaV = FMA(KP414213562, TaU, TaN);
TdA = FNMS(KP414213562, Tdp, Tdq);
Tbo = FNMS(KP414213562, TaN, TaU);
Tdr = FMA(KP414213562, Tdq, Tdp);
}
}
{
E T6J, Tb5, T72, Tb0, T6P, Tb7, T6W, TaY;
{
E T6F, T6I, T6G, Tb4, T6E, T6H;
T6F = cr[WS(rs, 59)];
T6I = ci[WS(rs, 59)];
T6E = W[116];
T6G = T6E * T6F;
Tb4 = T6E * T6I;
T6H = W[117];
T6J = FMA(T6H, T6I, T6G);
Tb5 = FNMS(T6H, T6F, Tb4);
}
{
E T6Y, T71, T6Z, TaZ, T6X, T70;
T6Y = cr[WS(rs, 43)];
T71 = ci[WS(rs, 43)];
T6X = W[84];
T6Z = T6X * T6Y;
TaZ = T6X * T71;
T70 = W[85];
T72 = FMA(T70, T71, T6Z);
Tb0 = FNMS(T70, T6Y, TaZ);
}
{
E T6L, T6O, T6M, Tb6, T6K, T6N;
T6L = cr[WS(rs, 27)];
T6O = ci[WS(rs, 27)];
T6K = W[52];
T6M = T6K * T6L;
Tb6 = T6K * T6O;
T6N = W[53];
T6P = FMA(T6N, T6O, T6M);
Tb7 = FNMS(T6N, T6L, Tb6);
}
{
E T6S, T6V, T6T, TaX, T6R, T6U;
T6S = cr[WS(rs, 11)];
T6V = ci[WS(rs, 11)];
T6R = W[20];
T6T = T6R * T6S;
TaX = T6R * T6V;
T6U = W[21];
T6W = FMA(T6U, T6V, T6T);
TaY = FNMS(T6U, T6S, TaX);
}
{
E T6Q, T73, Tg2, Tg3, Tg4, Tg5;
T6Q = T6J + T6P;
T73 = T6W + T72;
Tg2 = T6Q - T73;
Tg3 = Tb5 + Tb7;
Tg4 = TaY + Tb0;
Tg5 = Tg3 - Tg4;
T74 = T6Q + T73;
ThT = Tg3 + Tg4;
Tg6 = Tg2 + Tg5;
Tge = Tg2 - Tg5;
}
{
E Tb2, Tds, Tb9, Tdt;
{
E TaW, Tb1, Tb3, Tb8;
TaW = T6J - T6P;
Tb1 = TaY - Tb0;
Tb2 = TaW - Tb1;
Tds = TaW + Tb1;
Tb3 = T72 - T6W;
Tb8 = Tb5 - Tb7;
Tb9 = Tb3 - Tb8;
Tdt = Tb8 + Tb3;
}
Tba = FNMS(KP414213562, Tb9, Tb2);
TdB = FMA(KP414213562, Tds, Tdt);
Tbp = FMA(KP414213562, Tb2, Tb9);
Tdu = FNMS(KP414213562, Tdt, Tds);
}
}
{
E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiJ, TiC, TiG, T5j, TiK, Tix;
E TiF;
{
E TO, T1H, Tip, Tiq;
TO = Tm + TN;
T1H = T1f + T1G;
T1I = TO + T1H;
Tio = TO - T1H;
{
E T2B, T3u, TiO, TiW;
T2B = T29 + T2A;
T3u = T32 + T3t;
T3v = T2B + T3u;
Tj1 = T2B - T3u;
TiO = Ths + Thr;
TiW = TiP + TiV;
TiX = TiO + TiW;
Tj2 = TiW - TiO;
}
Tip = ThB + ThC;
Tiq = Thw + Thx;
Tir = Tip - Tiq;
TiN = Tiq + Tip;
{
E T6c, T75, Tiy, Tiz, TiA, TiB;
T6c = T5K + T6b;
T75 = T6D + T74;
Tiy = T6c - T75;
Tiz = ThX + ThY;
TiA = ThU + ThT;
TiB = Tiz - TiA;
T76 = T6c + T75;
TiJ = Tiz + TiA;
TiC = Tiy - TiB;
TiG = Tiy + TiB;
}
{
E T4p, T5i, Tit, Tiu, Tiv, Tiw;
T4p = T3X + T4o;
T5i = T4Q + T5h;
Tit = T4p - T5i;
Tiu = ThM + ThN;
Tiv = ThJ + ThI;
Tiw = Tiu - Tiv;
T5j = T4p + T5i;
TiK = Tiu + Tiv;
Tix = Tit + Tiw;
TiF = Tit - Tiw;
}
}
{
E T3w, T77, Tj3, Tj4;
T3w = T1I + T3v;
T77 = T5j + T76;
ci[WS(rs, 31)] = T3w - T77;
cr[0] = T3w + T77;
Tj3 = Tj1 + Tj2;
Tj4 = TiC - Tix;
cr[WS(rs, 56)] = FMS(KP707106781, Tj4, Tj3);
ci[WS(rs, 39)] = FMA(KP707106781, Tj4, Tj3);
}
{
E Tj5, Tj6, Tis, TiD;
Tj5 = Tj2 - Tj1;
Tj6 = TiG - TiF;
cr[WS(rs, 40)] = FMS(KP707106781, Tj6, Tj5);
ci[WS(rs, 55)] = FMA(KP707106781, Tj6, Tj5);
Tis = Tio - Tir;
TiD = Tix + TiC;
ci[WS(rs, 23)] = FNMS(KP707106781, TiD, Tis);
cr[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
}
{
E TiE, TiH, TiM, TiY;
TiE = Tio + Tir;
TiH = TiF + TiG;
cr[WS(rs, 24)] = FNMS(KP707106781, TiH, TiE);
ci[WS(rs, 7)] = FMA(KP707106781, TiH, TiE);
TiM = TiK + TiJ;
TiY = TiN + TiX;
cr[WS(rs, 32)] = TiM - TiY;
ci[WS(rs, 63)] = TiM + TiY;
}
{
E TiZ, Tj0, TiI, TiL;
TiZ = T76 - T5j;
Tj0 = TiX - TiN;
cr[WS(rs, 48)] = TiZ - Tj0;
ci[WS(rs, 47)] = TiZ + Tj0;
TiI = T1I - T3v;
TiL = TiJ - TiK;
cr[WS(rs, 16)] = TiI - TiL;
ci[WS(rs, 15)] = TiI + TiL;
}
}
{
E T99, Tk2, TbB, TjW, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch;
E Tcr, TbZ, Tkg, Tcn, Tka, Tbs, TbM, Tbw, TbI, T80, Tk9, Tkf, Tby, TbS, TjV;
E Tk1, Tck;
{
E T8z, Tbz, T98, TbA;
{
E T8n, T8y, T8W, T97;
T8n = FMA(KP707106781, T8m, T87);
T8y = FMA(KP707106781, T8x, T8u);
T8z = FNMS(KP198912367, T8y, T8n);
Tbz = FMA(KP198912367, T8n, T8y);
T8W = FMA(KP707106781, T8V, T8G);
T97 = FMA(KP707106781, T96, T93);
T98 = FMA(KP198912367, T97, T8W);
TbA = FNMS(KP198912367, T8W, T97);
}
T99 = T8z + T98;
Tk2 = T98 - T8z;
TbB = Tbz - TbA;
TjW = Tbz + TbA;
}
{
E Ta3, TbD, Tai, TbE;
{
E T9x, Ta2, Tae, Tah;
T9x = FMA(KP707106781, T9w, T9h);
Ta2 = T9M + Ta1;
Ta3 = FMA(KP923879532, Ta2, T9x);
TbD = FNMS(KP923879532, Ta2, T9x);
Tae = FMA(KP707106781, Tad, Taa);
Tah = Taf + Tag;
Tai = FMA(KP923879532, Tah, Tae);
TbE = FNMS(KP923879532, Tah, Tae);
}
Taj = FNMS(KP098491403, Tai, Ta3);
TbL = FNMS(KP820678790, TbD, TbE);
Tbv = FMA(KP098491403, Ta3, Tai);
TbF = FMA(KP820678790, TbE, TbD);
}
{
E Tca, Tcs, Tcd, Tct;
{
E Tc8, Tc9, Tcb, Tcc;
Tc8 = FNMS(KP707106781, TaF, Taq);
Tc9 = Tbp - Tbo;
Tca = FNMS(KP923879532, Tc9, Tc8);
Tcs = FMA(KP923879532, Tc9, Tc8);
Tcb = FNMS(KP707106781, Tbm, Tbj);
Tcc = Tba - TaV;
Tcd = FMA(KP923879532, Tcc, Tcb);
Tct = FNMS(KP923879532, Tcc, Tcb);
}
Tce = FNMS(KP534511135, Tcd, Tca);
Tcy = FNMS(KP303346683, Tcs, Tct);
Tci = FMA(KP534511135, Tca, Tcd);
Tcu = FMA(KP303346683, Tct, Tcs);
}
{
E Tc3, Tcp, Tc6, Tcq;
{
E Tc1, Tc2, Tc4, Tc5;
Tc1 = FNMS(KP707106781, T9w, T9h);
Tc2 = Taf - Tag;
Tc3 = FNMS(KP923879532, Tc2, Tc1);
Tcp = FMA(KP923879532, Tc2, Tc1);
Tc4 = FNMS(KP707106781, Tad, Taa);
Tc5 = Ta1 - T9M;
Tc6 = FNMS(KP923879532, Tc5, Tc4);
Tcq = FMA(KP923879532, Tc5, Tc4);
}
Tc7 = FNMS(KP534511135, Tc6, Tc3);
Tcx = FNMS(KP303346683, Tcp, Tcq);
Tch = FMA(KP534511135, Tc3, Tc6);
Tcr = FMA(KP303346683, Tcq, Tcp);
}
{
E TbV, Tcm, TbY, Tcl;
{
E TbT, TbU, TbW, TbX;
TbT = FNMS(KP707106781, T96, T93);
TbU = FNMS(KP707106781, T8V, T8G);
TbV = FMA(KP668178637, TbU, TbT);
Tcm = FNMS(KP668178637, TbT, TbU);
TbW = FNMS(KP707106781, T8x, T8u);
TbX = FNMS(KP707106781, T8m, T87);
TbY = FNMS(KP668178637, TbX, TbW);
Tcl = FMA(KP668178637, TbW, TbX);
}
TbZ = TbV - TbY;
Tkg = Tcl - Tcm;
Tcn = Tcl + Tcm;
Tka = TbY + TbV;
}
{
E Tbc, TbG, Tbr, TbH;
{
E TaG, Tbb, Tbn, Tbq;
TaG = FMA(KP707106781, TaF, Taq);
Tbb = TaV + Tba;
Tbc = FMA(KP923879532, Tbb, TaG);
TbG = FNMS(KP923879532, Tbb, TaG);
Tbn = FMA(KP707106781, Tbm, Tbj);
Tbq = Tbo + Tbp;
Tbr = FMA(KP923879532, Tbq, Tbn);
TbH = FNMS(KP923879532, Tbq, Tbn);
}
Tbs = FNMS(KP098491403, Tbr, Tbc);
TbM = FNMS(KP820678790, TbG, TbH);
Tbw = FMA(KP098491403, Tbc, Tbr);
TbI = FMA(KP820678790, TbH, TbG);
}
{
E T7u, TbO, TjT, Tk7, T7Z, Tk8, TbR, TjU, T7t, TjS;
T7t = T7l + T7s;
T7u = FMA(KP707106781, T7t, T7e);
TbO = FNMS(KP707106781, T7t, T7e);
TjS = TcB - TcC;
TjT = FMA(KP707106781, TjS, TjR);
Tk7 = FNMS(KP707106781, TjS, TjR);
{
E T7J, T7Y, TbP, TbQ;
T7J = FNMS(KP414213562, T7I, T7B);
T7Y = FMA(KP414213562, T7X, T7Q);
T7Z = T7J + T7Y;
Tk8 = T7Y - T7J;
TbP = FMA(KP414213562, T7B, T7I);
TbQ = FNMS(KP414213562, T7Q, T7X);
TbR = TbP - TbQ;
TjU = TbP + TbQ;
}
T80 = FMA(KP923879532, T7Z, T7u);
Tk9 = FMA(KP923879532, Tk8, Tk7);
Tkf = FNMS(KP923879532, Tk8, Tk7);
Tby = FNMS(KP923879532, T7Z, T7u);
TbS = FNMS(KP923879532, TbR, TbO);
TjV = FMA(KP923879532, TjU, TjT);
Tk1 = FNMS(KP923879532, TjU, TjT);
Tck = FMA(KP923879532, TbR, TbO);
}
{
E T9a, Tbt, TbK, TbN;
T9a = FMA(KP980785280, T99, T80);
Tbt = Taj + Tbs;
cr[WS(rs, 31)] = FNMS(KP995184726, Tbt, T9a);
ci[0] = FMA(KP995184726, Tbt, T9a);
TbK = FNMS(KP980785280, TbB, Tby);
TbN = TbL + TbM;
cr[WS(rs, 23)] = FMA(KP773010453, TbN, TbK);
ci[WS(rs, 8)] = FNMS(KP773010453, TbN, TbK);
}
{
E Tkb, Tkc, Tkj, Tkk;
Tkb = FMA(KP831469612, Tka, Tk9);
Tkc = Tcx - Tcy;
cr[WS(rs, 35)] = FMS(KP956940335, Tkc, Tkb);
ci[WS(rs, 60)] = FMA(KP956940335, Tkc, Tkb);
Tkj = FNMS(KP831469612, Tkg, Tkf);
Tkk = Tce - Tc7;
cr[WS(rs, 43)] = FMS(KP881921264, Tkk, Tkj);
ci[WS(rs, 52)] = FMA(KP881921264, Tkk, Tkj);
}
{
E Tbu, Tbx, TbC, TbJ;
Tbu = FNMS(KP980785280, T99, T80);
Tbx = Tbv + Tbw;
ci[WS(rs, 16)] = FNMS(KP995184726, Tbx, Tbu);
cr[WS(rs, 15)] = FMA(KP995184726, Tbx, Tbu);
TbC = FMA(KP980785280, TbB, Tby);
TbJ = TbF + TbI;
ci[WS(rs, 24)] = FNMS(KP773010453, TbJ, TbC);
cr[WS(rs, 7)] = FMA(KP773010453, TbJ, TbC);
}
{
E Tkd, Tke, Tkh, Tki;
Tkd = FNMS(KP831469612, Tka, Tk9);
Tke = Tcu - Tcr;
cr[WS(rs, 51)] = FMS(KP956940335, Tke, Tkd);
ci[WS(rs, 44)] = FMA(KP956940335, Tke, Tkd);
Tkh = FMA(KP831469612, Tkg, Tkf);
Tki = Tci - Tch;
cr[WS(rs, 59)] = FMS(KP881921264, Tki, Tkh);
ci[WS(rs, 36)] = FMA(KP881921264, Tki, Tkh);
}
{
E Tc0, Tcf, Tcw, Tcz;
Tc0 = FMA(KP831469612, TbZ, TbS);
Tcf = Tc7 + Tce;
cr[WS(rs, 27)] = FNMS(KP881921264, Tcf, Tc0);
ci[WS(rs, 4)] = FMA(KP881921264, Tcf, Tc0);
Tcw = FNMS(KP831469612, Tcn, Tck);
Tcz = Tcx + Tcy;
cr[WS(rs, 19)] = FMA(KP956940335, Tcz, Tcw);
ci[WS(rs, 12)] = FNMS(KP956940335, Tcz, Tcw);
}
{
E TjX, TjY, Tk5, Tk6;
TjX = FMA(KP980785280, TjW, TjV);
TjY = Tbw - Tbv;
cr[WS(rs, 63)] = FMS(KP995184726, TjY, TjX);
ci[WS(rs, 32)] = FMA(KP995184726, TjY, TjX);
Tk5 = FNMS(KP980785280, Tk2, Tk1);
Tk6 = TbI - TbF;
cr[WS(rs, 55)] = FMS(KP773010453, Tk6, Tk5);
ci[WS(rs, 40)] = FMA(KP773010453, Tk6, Tk5);
}
{
E Tcg, Tcj, Tco, Tcv;
Tcg = FNMS(KP831469612, TbZ, TbS);
Tcj = Tch + Tci;
ci[WS(rs, 20)] = FNMS(KP881921264, Tcj, Tcg);
cr[WS(rs, 11)] = FMA(KP881921264, Tcj, Tcg);
Tco = FMA(KP831469612, Tcn, Tck);
Tcv = Tcr + Tcu;
ci[WS(rs, 28)] = FNMS(KP956940335, Tcv, Tco);
cr[WS(rs, 3)] = FMA(KP956940335, Tcv, Tco);
}
{
E TjZ, Tk0, Tk3, Tk4;
TjZ = FNMS(KP980785280, TjW, TjV);
Tk0 = Tbs - Taj;
cr[WS(rs, 47)] = FMS(KP995184726, Tk0, TjZ);
ci[WS(rs, 48)] = FMA(KP995184726, Tk0, TjZ);
Tk3 = FMA(KP980785280, Tk2, Tk1);
Tk4 = TbL - TbM;
cr[WS(rs, 39)] = FMS(KP773010453, Tk4, Tk3);
ci[WS(rs, 56)] = FMA(KP773010453, Tk4, Tk3);
}
}
{
E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti6, Tif, Ti2, Tim, Ti5;
E Tii;
{
E Thq, Tht, Tj7, Tj8;
Thq = Tm - TN;
Tht = Thr - Ths;
Thu = Thq - Tht;
Ti8 = Thq + Tht;
Tj7 = T1f - T1G;
Tj8 = TiV - TiP;
Tj9 = Tj7 + Tj8;
Tjf = Tj8 - Tj7;
}
{
E Thz, Ti9, ThE, Tia;
{
E Thv, Thy, ThA, ThD;
Thv = T29 - T2A;
Thy = Thw - Thx;
Thz = Thv + Thy;
Ti9 = Thv - Thy;
ThA = T32 - T3t;
ThD = ThB - ThC;
ThE = ThA - ThD;
Tia = ThA + ThD;
}
ThF = Thz + ThE;
Tjg = Tia - Ti9;
Tib = Ti9 + Tia;
Tja = Thz - ThE;
}
{
E ThL, Tid, ThQ, Tie;
{
E ThH, ThK, ThO, ThP;
ThH = T3X - T4o;
ThK = ThI - ThJ;
ThL = ThH - ThK;
Tid = ThH + ThK;
ThO = ThM - ThN;
ThP = T4Q - T5h;
ThQ = ThO - ThP;
Tie = ThO + ThP;
}
ThR = FMA(KP414213562, ThQ, ThL);
Til = FMA(KP414213562, Tid, Tie);
Ti6 = FNMS(KP414213562, ThL, ThQ);
Tif = FNMS(KP414213562, Tie, Tid);
}
{
E ThW, Tig, Ti1, Tih;
{
E ThS, ThV, ThZ, Ti0;
ThS = T5K - T6b;
ThV = ThT - ThU;
ThW = ThS - ThV;
Tig = ThS + ThV;
ThZ = ThX - ThY;
Ti0 = T74 - T6D;
Ti1 = ThZ + Ti0;
Tih = Ti0 - ThZ;
}
Ti2 = FNMS(KP414213562, Ti1, ThW);
Tim = FMA(KP414213562, Tig, Tih);
Ti5 = FMA(KP414213562, ThW, Ti1);
Tii = FNMS(KP414213562, Tih, Tig);
}
{
E ThG, Ti3, Tjh, Tji;
ThG = FMA(KP707106781, ThF, Thu);
Ti3 = ThR + Ti2;
ci[WS(rs, 27)] = FNMS(KP923879532, Ti3, ThG);
cr[WS(rs, 4)] = FMA(KP923879532, Ti3, ThG);
Tjh = FMA(KP707106781, Tjg, Tjf);
Tji = Ti6 + Ti5;
cr[WS(rs, 36)] = FMS(KP923879532, Tji, Tjh);
ci[WS(rs, 59)] = FMA(KP923879532, Tji, Tjh);
}
{
E Tjj, Tjk, Ti4, Ti7;
Tjj = FNMS(KP707106781, Tjg, Tjf);
Tjk = Ti2 - ThR;
cr[WS(rs, 52)] = FMS(KP923879532, Tjk, Tjj);
ci[WS(rs, 43)] = FMA(KP923879532, Tjk, Tjj);
Ti4 = FNMS(KP707106781, ThF, Thu);
Ti7 = Ti5 - Ti6;
cr[WS(rs, 20)] = FNMS(KP923879532, Ti7, Ti4);
ci[WS(rs, 11)] = FMA(KP923879532, Ti7, Ti4);
}
{
E Tic, Tij, Tjb, Tjc;
Tic = FMA(KP707106781, Tib, Ti8);
Tij = Tif + Tii;
cr[WS(rs, 28)] = FNMS(KP923879532, Tij, Tic);
ci[WS(rs, 3)] = FMA(KP923879532, Tij, Tic);
Tjb = FMA(KP707106781, Tja, Tj9);
Tjc = Tim - Til;
cr[WS(rs, 60)] = FMS(KP923879532, Tjc, Tjb);
ci[WS(rs, 35)] = FMA(KP923879532, Tjc, Tjb);
}
{
E Tjd, Tje, Tik, Tin;
Tjd = FNMS(KP707106781, Tja, Tj9);
Tje = Tii - Tif;
cr[WS(rs, 44)] = FMS(KP923879532, Tje, Tjd);
ci[WS(rs, 51)] = FMA(KP923879532, Tje, Tjd);
Tik = FNMS(KP707106781, Tib, Ti8);
Tin = Til + Tim;
ci[WS(rs, 19)] = FNMS(KP923879532, Tin, Tik);
cr[WS(rs, 12)] = FMA(KP923879532, Tin, Tik);
}
}
{
E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th7;
E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th8, Thh, Tgi, TgC;
E Tgm, Tgy;
{
E TeQ, TjB, Tf1, TjC, TeV, Tf0;
TeQ = TeM + TeP;
TjB = Tjm - Tjl;
TeV = TeR - TeU;
Tf0 = TeW + TeZ;
Tf1 = TeV + Tf0;
TjC = Tf0 - TeV;
Tf2 = FNMS(KP707106781, Tf1, TeQ);
TjJ = FNMS(KP707106781, TjC, TjB);
Tgo = FMA(KP707106781, Tf1, TeQ);
TjD = FMA(KP707106781, TjC, TjB);
}
{
E TgE, Tjn, TgH, Tjo, TgF, TgG;
TgE = TeM - TeP;
Tjn = Tjl + Tjm;
TgF = TeR + TeU;
TgG = TeW - TeZ;
TgH = TgF + TgG;
Tjo = TgF - TgG;
TgI = FMA(KP707106781, TgH, TgE);
Tjv = FNMS(KP707106781, Tjo, Tjn);
Tha = FNMS(KP707106781, TgH, TgE);
Tjp = FMA(KP707106781, Tjo, Tjn);
}
{
E Tfd, Tgp, Tfo, Tgq;
{
E Tf7, Tfc, Tfi, Tfn;
Tf7 = Tf5 + Tf6;
Tfc = Tf8 + Tfb;
Tfd = FMA(KP414213562, Tfc, Tf7);
Tgp = FNMS(KP414213562, Tf7, Tfc);
Tfi = Tfg + Tfh;
Tfn = Tfj + Tfm;
Tfo = FNMS(KP414213562, Tfn, Tfi);
Tgq = FMA(KP414213562, Tfi, Tfn);
}
Tfp = Tfd - Tfo;
Tjw = Tgq - Tgp;
Tgr = Tgp + Tgq;
Tjq = Tfd + Tfo;
}
{
E Th0, Thi, Th3, Thj;
{
E TgY, TgZ, Th1, Th2;
TgY = TfS - TfV;
TgZ = Tgf + Tge;
Th0 = FMA(KP707106781, TgZ, TgY);
Thi = FNMS(KP707106781, TgZ, TgY);
Th1 = Tgc + Tg9;
Th2 = Tg6 - Tg1;
Th3 = FMA(KP707106781, Th2, Th1);
Thj = FNMS(KP707106781, Th2, Th1);
}
Th4 = FNMS(KP198912367, Th3, Th0);
Tho = FNMS(KP668178637, Thi, Thj);
Th7 = FMA(KP198912367, Th0, Th3);
Thk = FMA(KP668178637, Thj, Thi);
}
{
E TfH, Tgt, TfQ, Tgu;
{
E Tfv, TfG, TfM, TfP;
Tfv = Tfr + Tfu;
TfG = TfA + TfF;
TfH = FNMS(KP707106781, TfG, Tfv);
Tgt = FMA(KP707106781, TfG, Tfv);
TfM = TfK + TfL;
TfP = TfN + TfO;
TfQ = FNMS(KP707106781, TfP, TfM);
Tgu = FMA(KP707106781, TfP, TfM);
}
TfR = FMA(KP668178637, TfQ, TfH);
TgB = FMA(KP198912367, Tgt, Tgu);
Tgl = FNMS(KP668178637, TfH, TfQ);
Tgv = FNMS(KP198912367, Tgu, Tgt);
}
{
E TgL, Thc, TgO, Thb;
{
E TgJ, TgK, TgM, TgN;
TgJ = Tf8 - Tfb;
TgK = Tf5 - Tf6;
TgL = FMA(KP414213562, TgK, TgJ);
Thc = FNMS(KP414213562, TgJ, TgK);
TgM = Tfj - Tfm;
TgN = Tfg - Tfh;
TgO = FNMS(KP414213562, TgN, TgM);
Thb = FMA(KP414213562, TgM, TgN);
}
TgP = TgL + TgO;
TjK = TgL - TgO;
Thd = Thb - Thc;
TjE = Thc + Thb;
}
{
E TgT, Thf, TgW, Thg;
{
E TgR, TgS, TgU, TgV;
TgR = Tfr - Tfu;
TgS = TfN - TfO;
TgT = FMA(KP707106781, TgS, TgR);
Thf = FNMS(KP707106781, TgS, TgR);
TgU = TfK - TfL;
TgV = TfF - TfA;
TgW = FMA(KP707106781, TgV, TgU);
Thg = FNMS(KP707106781, TgV, TgU);
}
TgX = FMA(KP198912367, TgW, TgT);
Thn = FMA(KP668178637, Thf, Thg);
Th8 = FNMS(KP198912367, TgT, TgW);
Thh = FNMS(KP668178637, Thg, Thf);
}
{
E Tg8, Tgw, Tgh, Tgx;
{
E TfW, Tg7, Tgd, Tgg;
TfW = TfS + TfV;
Tg7 = Tg1 + Tg6;
Tg8 = FNMS(KP707106781, Tg7, TfW);
Tgw = FMA(KP707106781, Tg7, TfW);
Tgd = Tg9 - Tgc;
Tgg = Tge - Tgf;
Tgh = FNMS(KP707106781, Tgg, Tgd);
Tgx = FMA(KP707106781, Tgg, Tgd);
}
Tgi = FMA(KP668178637, Tgh, Tg8);
TgC = FMA(KP198912367, Tgw, Tgx);
Tgm = FNMS(KP668178637, Tg8, Tgh);
Tgy = FNMS(KP198912367, Tgx, Tgw);
}
{
E Tfq, Tgj, TgA, TgD;
Tfq = FMA(KP923879532, Tfp, Tf2);
Tgj = TfR + Tgi;
ci[WS(rs, 25)] = FNMS(KP831469612, Tgj, Tfq);
cr[WS(rs, 6)] = FMA(KP831469612, Tgj, Tfq);
TgA = FNMS(KP923879532, Tgr, Tgo);
TgD = TgB + TgC;
ci[WS(rs, 17)] = FNMS(KP980785280, TgD, TgA);
cr[WS(rs, 14)] = FMA(KP980785280, TgD, TgA);
}
{
E TjF, TjG, TjN, TjO;
TjF = FMA(KP923879532, TjE, TjD);
TjG = Th8 + Th7;
cr[WS(rs, 34)] = FMS(KP980785280, TjG, TjF);
ci[WS(rs, 61)] = FMA(KP980785280, TjG, TjF);
TjN = FNMS(KP923879532, TjK, TjJ);
TjO = Thk - Thh;
cr[WS(rs, 42)] = FMS(KP831469612, TjO, TjN);
ci[WS(rs, 53)] = FMA(KP831469612, TjO, TjN);
}
{
E Tgk, Tgn, Tgs, Tgz;
Tgk = FNMS(KP923879532, Tfp, Tf2);
Tgn = Tgl + Tgm;
cr[WS(rs, 22)] = FMA(KP831469612, Tgn, Tgk);
ci[WS(rs, 9)] = FNMS(KP831469612, Tgn, Tgk);
Tgs = FMA(KP923879532, Tgr, Tgo);
Tgz = Tgv + Tgy;
cr[WS(rs, 30)] = FNMS(KP980785280, Tgz, Tgs);
ci[WS(rs, 1)] = FMA(KP980785280, Tgz, Tgs);
}
{
E TjH, TjI, TjL, TjM;
TjH = FNMS(KP923879532, TjE, TjD);
TjI = Th4 - TgX;
cr[WS(rs, 50)] = FMS(KP980785280, TjI, TjH);
ci[WS(rs, 45)] = FMA(KP980785280, TjI, TjH);
TjL = FMA(KP923879532, TjK, TjJ);
TjM = Thn + Tho;
cr[WS(rs, 58)] = -(FMA(KP831469612, TjM, TjL));
ci[WS(rs, 37)] = FNMS(KP831469612, TjM, TjL);
}
{
E TgQ, Th5, Thm, Thp;
TgQ = FMA(KP923879532, TgP, TgI);
Th5 = TgX + Th4;
ci[WS(rs, 29)] = FNMS(KP980785280, Th5, TgQ);
cr[WS(rs, 2)] = FMA(KP980785280, Th5, TgQ);
Thm = FNMS(KP923879532, Thd, Tha);
Thp = Thn - Tho;
ci[WS(rs, 21)] = FNMS(KP831469612, Thp, Thm);
cr[WS(rs, 10)] = FMA(KP831469612, Thp, Thm);
}
{
E Tjr, Tjs, Tjz, TjA;
Tjr = FMA(KP923879532, Tjq, Tjp);
Tjs = TgC - TgB;
cr[WS(rs, 62)] = FMS(KP980785280, Tjs, Tjr);
ci[WS(rs, 33)] = FMA(KP980785280, Tjs, Tjr);
Tjz = FNMS(KP923879532, Tjw, Tjv);
TjA = Tgi - TfR;
cr[WS(rs, 54)] = FMS(KP831469612, TjA, Tjz);
ci[WS(rs, 41)] = FMA(KP831469612, TjA, Tjz);
}
{
E Th6, Th9, The, Thl;
Th6 = FNMS(KP923879532, TgP, TgI);
Th9 = Th7 - Th8;
cr[WS(rs, 18)] = FNMS(KP980785280, Th9, Th6);
ci[WS(rs, 13)] = FMA(KP980785280, Th9, Th6);
The = FMA(KP923879532, Thd, Tha);
Thl = Thh + Thk;
cr[WS(rs, 26)] = FNMS(KP831469612, Thl, The);
ci[WS(rs, 5)] = FMA(KP831469612, Thl, The);
}
{
E Tjt, Tju, Tjx, Tjy;
Tjt = FNMS(KP923879532, Tjq, Tjp);
Tju = Tgy - Tgv;
cr[WS(rs, 46)] = FMS(KP980785280, Tju, Tjt);
ci[WS(rs, 49)] = FMA(KP980785280, Tju, Tjt);
Tjx = FMA(KP923879532, Tjw, Tjv);
Tjy = Tgl - Tgm;
cr[WS(rs, 38)] = FMS(KP831469612, Tjy, Tjx);
ci[WS(rs, 57)] = FMA(KP831469612, Tjy, Tjx);
}
}
{
E Td1, Tkw, TdN, Tkq, Tdl, TdX, TdI, TdR, Teq, TeK, Tet, TeG, Tej, TeJ, Teu;
E TeD, Teb, TkK, Tez, TkE, TdE, TdY, TdH, TdU, TcM, TkD, TkJ, TdK, Te4, Tkp;
E Tkv, Tew;
{
E TcT, TdM, Td0, TdL;
{
E TcP, TcS, TcW, TcZ;
TcP = FMA(KP707106781, TcO, TcN);
TcS = FMA(KP707106781, TcR, TcQ);
TcT = FMA(KP198912367, TcS, TcP);
TdM = FNMS(KP198912367, TcP, TcS);
TcW = FMA(KP707106781, TcV, TcU);
TcZ = FMA(KP707106781, TcY, TcX);
Td0 = FNMS(KP198912367, TcZ, TcW);
TdL = FMA(KP198912367, TcW, TcZ);
}
Td1 = TcT + Td0;
Tkw = TcT - Td0;
TdN = TdL - TdM;
Tkq = TdM + TdL;
}
{
E Tdd, TdP, Tdk, TdQ;
{
E Td5, Tdc, Tdg, Tdj;
Td5 = FMA(KP707106781, Td4, Td3);
Tdc = Td8 + Tdb;
Tdd = FMA(KP923879532, Tdc, Td5);
TdP = FNMS(KP923879532, Tdc, Td5);
Tdg = FMA(KP707106781, Tdf, Tde);
Tdj = Tdh + Tdi;
Tdk = FMA(KP923879532, Tdj, Tdg);
TdQ = FNMS(KP923879532, Tdj, Tdg);
}
Tdl = FMA(KP098491403, Tdk, Tdd);
TdX = FMA(KP820678790, TdP, TdQ);
TdI = FNMS(KP098491403, Tdd, Tdk);
TdR = FNMS(KP820678790, TdQ, TdP);
}
{
E Tem, TeE, Tep, TeF;
{
E Tek, Tel, Ten, Teo;
Tek = FNMS(KP707106781, Tdn, Tdm);
Tel = TdB - TdA;
Tem = FNMS(KP923879532, Tel, Tek);
TeE = FMA(KP923879532, Tel, Tek);
Ten = FNMS(KP707106781, Tdy, Tdx);
Teo = Tdu - Tdr;
Tep = FMA(KP923879532, Teo, Ten);
TeF = FNMS(KP923879532, Teo, Ten);
}
Teq = FNMS(KP534511135, Tep, Tem);
TeK = FNMS(KP303346683, TeE, TeF);
Tet = FMA(KP534511135, Tem, Tep);
TeG = FMA(KP303346683, TeF, TeE);
}
{
E Tef, TeB, Tei, TeC;
{
E Ted, Tee, Teg, Teh;
Ted = FNMS(KP707106781, Td4, Td3);
Tee = Tdi - Tdh;
Tef = FNMS(KP923879532, Tee, Ted);
TeB = FMA(KP923879532, Tee, Ted);
Teg = FNMS(KP707106781, Tdf, Tde);
Teh = Td8 - Tdb;
Tei = FNMS(KP923879532, Teh, Teg);
TeC = FMA(KP923879532, Teh, Teg);
}
Tej = FMA(KP534511135, Tei, Tef);
TeJ = FMA(KP303346683, TeB, TeC);
Teu = FNMS(KP534511135, Tef, Tei);
TeD = FNMS(KP303346683, TeC, TeB);
}
{
E Te7, Tex, Tea, Tey;
{
E Te5, Te6, Te8, Te9;
Te5 = FNMS(KP707106781, TcR, TcQ);
Te6 = FNMS(KP707106781, TcO, TcN);
Te7 = FMA(KP668178637, Te6, Te5);
Tex = FNMS(KP668178637, Te5, Te6);
Te8 = FNMS(KP707106781, TcY, TcX);
Te9 = FNMS(KP707106781, TcV, TcU);
Tea = FNMS(KP668178637, Te9, Te8);
Tey = FMA(KP668178637, Te8, Te9);
}
Teb = Te7 - Tea;
TkK = Tey - Tex;
Tez = Tex + Tey;
TkE = Te7 + Tea;
}
{
E Tdw, TdS, TdD, TdT;
{
E Tdo, Tdv, Tdz, TdC;
Tdo = FMA(KP707106781, Tdn, Tdm);
Tdv = Tdr + Tdu;
Tdw = FMA(KP923879532, Tdv, Tdo);
TdS = FNMS(KP923879532, Tdv, Tdo);
Tdz = FMA(KP707106781, Tdy, Tdx);
TdC = TdA + TdB;
TdD = FMA(KP923879532, TdC, Tdz);
TdT = FNMS(KP923879532, TdC, Tdz);
}
TdE = FNMS(KP098491403, TdD, Tdw);
TdY = FNMS(KP820678790, TdS, TdT);
TdH = FMA(KP098491403, Tdw, TdD);
TdU = FMA(KP820678790, TdT, TdS);
}
{
E TcE, Te0, Tkn, TkB, TcL, TkC, Te3, Tko, TcD, Tkm;
TcD = TcB + TcC;
TcE = FMA(KP707106781, TcD, TcA);
Te0 = FNMS(KP707106781, TcD, TcA);
Tkm = T7s - T7l;
Tkn = FMA(KP707106781, Tkm, Tkl);
TkB = FNMS(KP707106781, Tkm, Tkl);
{
E TcH, TcK, Te1, Te2;
TcH = FMA(KP414213562, TcG, TcF);
TcK = FNMS(KP414213562, TcJ, TcI);
TcL = TcH + TcK;
TkC = TcH - TcK;
Te1 = FMA(KP414213562, TcI, TcJ);
Te2 = FNMS(KP414213562, TcF, TcG);
Te3 = Te1 - Te2;
Tko = Te2 + Te1;
}
TcM = FMA(KP923879532, TcL, TcE);
TkD = FMA(KP923879532, TkC, TkB);
TkJ = FNMS(KP923879532, TkC, TkB);
TdK = FNMS(KP923879532, TcL, TcE);
Te4 = FNMS(KP923879532, Te3, Te0);
Tkp = FMA(KP923879532, Tko, Tkn);
Tkv = FNMS(KP923879532, Tko, Tkn);
Tew = FMA(KP923879532, Te3, Te0);
}
{
E Td2, TdF, TdW, TdZ;
Td2 = FMA(KP980785280, Td1, TcM);
TdF = Tdl + TdE;
ci[WS(rs, 30)] = FNMS(KP995184726, TdF, Td2);
cr[WS(rs, 1)] = FMA(KP995184726, TdF, Td2);
TdW = FNMS(KP980785280, TdN, TdK);
TdZ = TdX - TdY;
ci[WS(rs, 22)] = FNMS(KP773010453, TdZ, TdW);
cr[WS(rs, 9)] = FMA(KP773010453, TdZ, TdW);
}
{
E TkF, TkG, TkN, TkO;
TkF = FMA(KP831469612, TkE, TkD);
TkG = TeJ + TeK;
cr[WS(rs, 61)] = -(FMA(KP956940335, TkG, TkF));
ci[WS(rs, 34)] = FNMS(KP956940335, TkG, TkF);
TkN = FNMS(KP831469612, TkK, TkJ);
TkO = Teq - Tej;
cr[WS(rs, 53)] = FMS(KP881921264, TkO, TkN);
ci[WS(rs, 42)] = FMA(KP881921264, TkO, TkN);
}
{
E TdG, TdJ, TdO, TdV;
TdG = FNMS(KP980785280, Td1, TcM);
TdJ = TdH - TdI;
cr[WS(rs, 17)] = FNMS(KP995184726, TdJ, TdG);
ci[WS(rs, 14)] = FMA(KP995184726, TdJ, TdG);
TdO = FMA(KP980785280, TdN, TdK);
TdV = TdR + TdU;
cr[WS(rs, 25)] = FNMS(KP773010453, TdV, TdO);
ci[WS(rs, 6)] = FMA(KP773010453, TdV, TdO);
}
{
E TkH, TkI, TkL, TkM;
TkH = FNMS(KP831469612, TkE, TkD);
TkI = TeG - TeD;
cr[WS(rs, 45)] = FMS(KP956940335, TkI, TkH);
ci[WS(rs, 50)] = FMA(KP956940335, TkI, TkH);
TkL = FMA(KP831469612, TkK, TkJ);
TkM = Teu + Tet;
cr[WS(rs, 37)] = FMS(KP881921264, TkM, TkL);
ci[WS(rs, 58)] = FMA(KP881921264, TkM, TkL);
}
{
E Tec, Ter, TeI, TeL;
Tec = FMA(KP831469612, Teb, Te4);
Ter = Tej + Teq;
ci[WS(rs, 26)] = FNMS(KP881921264, Ter, Tec);
cr[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
TeI = FNMS(KP831469612, Tez, Tew);
TeL = TeJ - TeK;
ci[WS(rs, 18)] = FNMS(KP956940335, TeL, TeI);
cr[WS(rs, 13)] = FMA(KP956940335, TeL, TeI);
}
{
E Tkr, Tks, Tkz, TkA;
Tkr = FMA(KP980785280, Tkq, Tkp);
Tks = TdI + TdH;
cr[WS(rs, 33)] = FMS(KP995184726, Tks, Tkr);
ci[WS(rs, 62)] = FMA(KP995184726, Tks, Tkr);
Tkz = FNMS(KP980785280, Tkw, Tkv);
TkA = TdU - TdR;
cr[WS(rs, 41)] = FMS(KP773010453, TkA, Tkz);
ci[WS(rs, 54)] = FMA(KP773010453, TkA, Tkz);
}
{
E Tes, Tev, TeA, TeH;
Tes = FNMS(KP831469612, Teb, Te4);
Tev = Tet - Teu;
cr[WS(rs, 21)] = FNMS(KP881921264, Tev, Tes);
ci[WS(rs, 10)] = FMA(KP881921264, Tev, Tes);
TeA = FMA(KP831469612, Tez, Tew);
TeH = TeD + TeG;
cr[WS(rs, 29)] = FNMS(KP956940335, TeH, TeA);
ci[WS(rs, 2)] = FMA(KP956940335, TeH, TeA);
}
{
E Tkt, Tku, Tkx, Tky;
Tkt = FNMS(KP980785280, Tkq, Tkp);
Tku = TdE - Tdl;
cr[WS(rs, 49)] = FMS(KP995184726, Tku, Tkt);
ci[WS(rs, 46)] = FMA(KP995184726, Tku, Tkt);
Tkx = FMA(KP980785280, Tkw, Tkv);
Tky = TdX + TdY;
cr[WS(rs, 57)] = -(FMA(KP773010453, Tky, Tkx));
ci[WS(rs, 38)] = FNMS(KP773010453, Tky, Tkx);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 64 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, { 520, 126, 518, 0 } };
void X(codelet_hf_64) (planner *p) {
X(khc2hc_register) (p, hf_64, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 64 -dit -name hf_64 -include rdft/scalar/hf.h */
/*
* This function contains 1038 FP additions, 500 FP multiplications,
* (or, 808 additions, 270 multiplications, 230 fused multiply/add),
* 176 stack variables, 15 constants, and 256 memory accesses
*/
#include "rdft/scalar/hf.h"
static void hf_64(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 126); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) {
E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, Tim, TaC;
E ThQ, T14, Tfr, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfq, T6J, T9P, TaJ, Tc1;
E TcZ, TeF, T1Q, T2d, Tfu, Tfv, Tfw, Tfx, T6Q, TaM, Tdb, TeI, T71, TaQ, T7a;
E TaN, Td6, TeJ, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeL;
E T7s, TaU, T7B, TaX, Tdh, TeM, T7y, TaT, T5j, TfR, Tec, TeX, TfY, Tgy, T8D;
E Tbl, T8O, Tbx, T9l, Tbm, TdV, Tf0, T9i, Tbw, T3M, TfL, TdL, TeT, TfI, Tgt;
E T7K, Tbd, T7V, Tb3, T8s, Tbe, Tdu, TeQ, T8p, Tb2, T4x, TfJ, TdE, TdM, TfO;
E Tgu, T87, T8u, T8i, T8v, Tba, Tbh, Tdz, TdN, Tb7, Tbg, T64, TfZ, Te5, Ted;
E TfU, Tgz, T90, T9n, T9b, T9o, Tbt, TbA, Te0, Tee, Tbq, Tbz;
{
E T1, TgR, T6, TgQ, Tc, T68, Th, T69;
T1 = cr[0];
TgR = ci[0];
{
E T3, T5, T2, T4;
T3 = cr[WS(rs, 32)];
T5 = ci[WS(rs, 32)];
T2 = W[62];
T4 = W[63];
T6 = FMA(T2, T3, T4 * T5);
TgQ = FNMS(T4, T3, T2 * T5);
}
{
E T9, Tb, T8, Ta;
T9 = cr[WS(rs, 16)];
Tb = ci[WS(rs, 16)];
T8 = W[30];
Ta = W[31];
Tc = FMA(T8, T9, Ta * Tb);
T68 = FNMS(Ta, T9, T8 * Tb);
}
{
E Te, Tg, Td, Tf;
Te = cr[WS(rs, 48)];
Tg = ci[WS(rs, 48)];
Td = W[94];
Tf = W[95];
Th = FMA(Td, Te, Tf * Tg);
T69 = FNMS(Tf, Te, Td * Tg);
}
{
E T7, Ti, ThR, ThS;
T7 = T1 + T6;
Ti = Tc + Th;
Tj = T7 + Ti;
TcL = T7 - Ti;
ThR = Tc - Th;
ThS = TgR - TgQ;
ThT = ThR + ThS;
Tin = ThS - ThR;
}
{
E T67, T6a, TgP, TgS;
T67 = T1 - T6;
T6a = T68 - T69;
T6b = T67 - T6a;
Taz = T67 + T6a;
TgP = T68 + T69;
TgS = TgQ + TgR;
TgT = TgP + TgS;
Thn = TgS - TgP;
}
}
{
E To, T6d, Tt, T6e, T6c, T6f, Tz, T6i, TE, T6j, T6h, T6k;
{
E Tl, Tn, Tk, Tm;
Tl = cr[WS(rs, 8)];
Tn = ci[WS(rs, 8)];
Tk = W[14];
Tm = W[15];
To = FMA(Tk, Tl, Tm * Tn);
T6d = FNMS(Tm, Tl, Tk * Tn);
}
{
E Tq, Ts, Tp, Tr;
Tq = cr[WS(rs, 40)];
Ts = ci[WS(rs, 40)];
Tp = W[78];
Tr = W[79];
Tt = FMA(Tp, Tq, Tr * Ts);
T6e = FNMS(Tr, Tq, Tp * Ts);
}
T6c = To - Tt;
T6f = T6d - T6e;
{
E Tw, Ty, Tv, Tx;
Tw = cr[WS(rs, 56)];
Ty = ci[WS(rs, 56)];
Tv = W[110];
Tx = W[111];
Tz = FMA(Tv, Tw, Tx * Ty);
T6i = FNMS(Tx, Tw, Tv * Ty);
}
{
E TB, TD, TA, TC;
TB = cr[WS(rs, 24)];
TD = ci[WS(rs, 24)];
TA = W[46];
TC = W[47];
TE = FMA(TA, TB, TC * TD);
T6j = FNMS(TC, TB, TA * TD);
}
T6h = Tz - TE;
T6k = T6i - T6j;
{
E Tu, TF, TcM, TcN;
Tu = To + Tt;
TF = Tz + TE;
TG = Tu + TF;
Thm = Tu - TF;
TcM = T6i + T6j;
TcN = T6d + T6e;
TcO = TcM - TcN;
TgO = TcN + TcM;
}
{
E T6g, T6l, TaA, TaB;
T6g = T6c - T6f;
T6l = T6h + T6k;
T6m = KP707106781 * (T6g + T6l);
Tim = KP707106781 * (T6l - T6g);
TaA = T6c + T6f;
TaB = T6h - T6k;
TaC = KP707106781 * (TaA + TaB);
ThQ = KP707106781 * (TaA - TaB);
}
}
{
E TS, TcR, T6o, T6v, T13, TcS, T6r, T6w, T6s, T6x;
{
E TM, T6t, TR, T6u;
{
E TJ, TL, TI, TK;
TJ = cr[WS(rs, 4)];
TL = ci[WS(rs, 4)];
TI = W[6];
TK = W[7];
TM = FMA(TI, TJ, TK * TL);
T6t = FNMS(TK, TJ, TI * TL);
}
{
E TO, TQ, TN, TP;
TO = cr[WS(rs, 36)];
TQ = ci[WS(rs, 36)];
TN = W[70];
TP = W[71];
TR = FMA(TN, TO, TP * TQ);
T6u = FNMS(TP, TO, TN * TQ);
}
TS = TM + TR;
TcR = T6t + T6u;
T6o = TM - TR;
T6v = T6t - T6u;
}
{
E TX, T6p, T12, T6q;
{
E TU, TW, TT, TV;
TU = cr[WS(rs, 20)];
TW = ci[WS(rs, 20)];
TT = W[38];
TV = W[39];
TX = FMA(TT, TU, TV * TW);
T6p = FNMS(TV, TU, TT * TW);
}
{
E TZ, T11, TY, T10;
TZ = cr[WS(rs, 52)];
T11 = ci[WS(rs, 52)];
TY = W[102];
T10 = W[103];
T12 = FMA(TY, TZ, T10 * T11);
T6q = FNMS(T10, TZ, TY * T11);
}
T13 = TX + T12;
TcS = T6p + T6q;
T6r = T6p - T6q;
T6w = TX - T12;
}
T14 = TS + T13;
Tfr = TcR + TcS;
T6s = T6o - T6r;
T6x = T6v + T6w;
T6y = FNMS(KP382683432, T6x, KP923879532 * T6s);
T9O = FMA(KP923879532, T6x, KP382683432 * T6s);
{
E TaE, TaF, TcQ, TcT;
TaE = T6v - T6w;
TaF = T6o + T6r;
TaG = FMA(KP382683432, TaE, KP923879532 * TaF);
Tc0 = FNMS(KP923879532, TaE, KP382683432 * TaF);
TcQ = TS - T13;
TcT = TcR - TcS;
TcU = TcQ + TcT;
TeE = TcQ - TcT;
}
}
{
E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I;
{
E T19, T6z, T1e, T6A;
{
E T16, T18, T15, T17;
T16 = cr[WS(rs, 60)];
T18 = ci[WS(rs, 60)];
T15 = W[118];
T17 = W[119];
T19 = FMA(T15, T16, T17 * T18);
T6z = FNMS(T17, T16, T15 * T18);
}
{
E T1b, T1d, T1a, T1c;
T1b = cr[WS(rs, 28)];
T1d = ci[WS(rs, 28)];
T1a = W[54];
T1c = W[55];
T1e = FMA(T1a, T1b, T1c * T1d);
T6A = FNMS(T1c, T1b, T1a * T1d);
}
T1f = T19 + T1e;
TcW = T6z + T6A;
T6B = T6z - T6A;
T6E = T19 - T1e;
}
{
E T1k, T6F, T1p, T6G;
{
E T1h, T1j, T1g, T1i;
T1h = cr[WS(rs, 12)];
T1j = ci[WS(rs, 12)];
T1g = W[22];
T1i = W[23];
T1k = FMA(T1g, T1h, T1i * T1j);
T6F = FNMS(T1i, T1h, T1g * T1j);
}
{
E T1m, T1o, T1l, T1n;
T1m = cr[WS(rs, 44)];
T1o = ci[WS(rs, 44)];
T1l = W[86];
T1n = W[87];
T1p = FMA(T1l, T1m, T1n * T1o);
T6G = FNMS(T1n, T1m, T1l * T1o);
}
T1q = T1k + T1p;
TcX = T6F + T6G;
T6C = T1k - T1p;
T6H = T6F - T6G;
}
T1r = T1f + T1q;
Tfq = TcW + TcX;
T6D = T6B + T6C;
T6I = T6E - T6H;
T6J = FMA(KP382683432, T6D, KP923879532 * T6I);
T9P = FNMS(KP923879532, T6D, KP382683432 * T6I);
{
E TaH, TaI, TcV, TcY;
TaH = T6E + T6H;
TaI = T6B - T6C;
TaJ = FNMS(KP382683432, TaI, KP923879532 * TaH);
Tc1 = FMA(KP923879532, TaI, KP382683432 * TaH);
TcV = T1f - T1q;
TcY = TcW - TcX;
TcZ = TcV - TcY;
TeF = TcV + TcY;
}
}
{
E T1y, T73, T1D, T74, T1E, Td7, T1J, T6N, T1O, T6O, T1P, Td8, T21, Td4, T6R;
E T6U, T2c, Td3, T6W, T6Z;
{
E T1v, T1x, T1u, T1w;
T1v = cr[WS(rs, 2)];
T1x = ci[WS(rs, 2)];
T1u = W[2];
T1w = W[3];
T1y = FMA(T1u, T1v, T1w * T1x);
T73 = FNMS(T1w, T1v, T1u * T1x);
}
{
E T1A, T1C, T1z, T1B;
T1A = cr[WS(rs, 34)];
T1C = ci[WS(rs, 34)];
T1z = W[66];
T1B = W[67];
T1D = FMA(T1z, T1A, T1B * T1C);
T74 = FNMS(T1B, T1A, T1z * T1C);
}
T1E = T1y + T1D;
Td7 = T73 + T74;
{
E T1G, T1I, T1F, T1H;
T1G = cr[WS(rs, 18)];
T1I = ci[WS(rs, 18)];
T1F = W[34];
T1H = W[35];
T1J = FMA(T1F, T1G, T1H * T1I);
T6N = FNMS(T1H, T1G, T1F * T1I);
}
{
E T1L, T1N, T1K, T1M;
T1L = cr[WS(rs, 50)];
T1N = ci[WS(rs, 50)];
T1K = W[98];
T1M = W[99];
T1O = FMA(T1K, T1L, T1M * T1N);
T6O = FNMS(T1M, T1L, T1K * T1N);
}
T1P = T1J + T1O;
Td8 = T6N + T6O;
{
E T1V, T6S, T20, T6T;
{
E T1S, T1U, T1R, T1T;
T1S = cr[WS(rs, 10)];
T1U = ci[WS(rs, 10)];
T1R = W[18];
T1T = W[19];
T1V = FMA(T1R, T1S, T1T * T1U);
T6S = FNMS(T1T, T1S, T1R * T1U);
}
{
E T1X, T1Z, T1W, T1Y;
T1X = cr[WS(rs, 42)];
T1Z = ci[WS(rs, 42)];
T1W = W[82];
T1Y = W[83];
T20 = FMA(T1W, T1X, T1Y * T1Z);
T6T = FNMS(T1Y, T1X, T1W * T1Z);
}
T21 = T1V + T20;
Td4 = T6S + T6T;
T6R = T1V - T20;
T6U = T6S - T6T;
}
{
E T26, T6X, T2b, T6Y;
{
E T23, T25, T22, T24;
T23 = cr[WS(rs, 58)];
T25 = ci[WS(rs, 58)];
T22 = W[114];
T24 = W[115];
T26 = FMA(T22, T23, T24 * T25);
T6X = FNMS(T24, T23, T22 * T25);
}
{
E T28, T2a, T27, T29;
T28 = cr[WS(rs, 26)];
T2a = ci[WS(rs, 26)];
T27 = W[50];
T29 = W[51];
T2b = FMA(T27, T28, T29 * T2a);
T6Y = FNMS(T29, T28, T27 * T2a);
}
T2c = T26 + T2b;
Td3 = T6X + T6Y;
T6W = T26 - T2b;
T6Z = T6X - T6Y;
}
T1Q = T1E + T1P;
T2d = T21 + T2c;
Tfu = T1Q - T2d;
Tfv = Td7 + Td8;
Tfw = Td4 + Td3;
Tfx = Tfv - Tfw;
{
E T6M, T6P, Td9, Tda;
T6M = T1y - T1D;
T6P = T6N - T6O;
T6Q = T6M - T6P;
TaM = T6M + T6P;
Td9 = Td7 - Td8;
Tda = T21 - T2c;
Tdb = Td9 - Tda;
TeI = Td9 + Tda;
}
{
E T6V, T70, T78, T79;
T6V = T6R - T6U;
T70 = T6W + T6Z;
T71 = KP707106781 * (T6V + T70);
TaQ = KP707106781 * (T70 - T6V);
T78 = T6R + T6U;
T79 = T6Z - T6W;
T7a = KP707106781 * (T78 + T79);
TaN = KP707106781 * (T78 - T79);
}
{
E Td2, Td5, T75, T76;
Td2 = T1E - T1P;
Td5 = Td3 - Td4;
Td6 = Td2 - Td5;
TeJ = Td2 + Td5;
T75 = T73 - T74;
T76 = T1J - T1O;
T77 = T75 + T76;
TaP = T75 - T76;
}
}
{
E T2j, T7u, T2o, T7v, T2p, Tdd, T2u, T7e, T2z, T7f, T2A, Tde, T2M, Tdk, T7i;
E T7l, T2X, Tdj, T7n, T7q;
{
E T2g, T2i, T2f, T2h;
T2g = cr[WS(rs, 62)];
T2i = ci[WS(rs, 62)];
T2f = W[122];
T2h = W[123];
T2j = FMA(T2f, T2g, T2h * T2i);
T7u = FNMS(T2h, T2g, T2f * T2i);
}
{
E T2l, T2n, T2k, T2m;
T2l = cr[WS(rs, 30)];
T2n = ci[WS(rs, 30)];
T2k = W[58];
T2m = W[59];
T2o = FMA(T2k, T2l, T2m * T2n);
T7v = FNMS(T2m, T2l, T2k * T2n);
}
T2p = T2j + T2o;
Tdd = T7u + T7v;
{
E T2r, T2t, T2q, T2s;
T2r = cr[WS(rs, 14)];
T2t = ci[WS(rs, 14)];
T2q = W[26];
T2s = W[27];
T2u = FMA(T2q, T2r, T2s * T2t);
T7e = FNMS(T2s, T2r, T2q * T2t);
}
{
E T2w, T2y, T2v, T2x;
T2w = cr[WS(rs, 46)];
T2y = ci[WS(rs, 46)];
T2v = W[90];
T2x = W[91];
T2z = FMA(T2v, T2w, T2x * T2y);
T7f = FNMS(T2x, T2w, T2v * T2y);
}
T2A = T2u + T2z;
Tde = T7e + T7f;
{
E T2G, T7j, T2L, T7k;
{
E T2D, T2F, T2C, T2E;
T2D = cr[WS(rs, 6)];
T2F = ci[WS(rs, 6)];
T2C = W[10];
T2E = W[11];
T2G = FMA(T2C, T2D, T2E * T2F);
T7j = FNMS(T2E, T2D, T2C * T2F);
}
{
E T2I, T2K, T2H, T2J;
T2I = cr[WS(rs, 38)];
T2K = ci[WS(rs, 38)];
T2H = W[74];
T2J = W[75];
T2L = FMA(T2H, T2I, T2J * T2K);
T7k = FNMS(T2J, T2I, T2H * T2K);
}
T2M = T2G + T2L;
Tdk = T7j + T7k;
T7i = T2G - T2L;
T7l = T7j - T7k;
}
{
E T2R, T7o, T2W, T7p;
{
E T2O, T2Q, T2N, T2P;
T2O = cr[WS(rs, 54)];
T2Q = ci[WS(rs, 54)];
T2N = W[106];
T2P = W[107];
T2R = FMA(T2N, T2O, T2P * T2Q);
T7o = FNMS(T2P, T2O, T2N * T2Q);
}
{
E T2T, T2V, T2S, T2U;
T2T = cr[WS(rs, 22)];
T2V = ci[WS(rs, 22)];
T2S = W[42];
T2U = W[43];
T2W = FMA(T2S, T2T, T2U * T2V);
T7p = FNMS(T2U, T2T, T2S * T2V);
}
T2X = T2R + T2W;
Tdj = T7o + T7p;
T7n = T2R - T2W;
T7q = T7o - T7p;
}
T2B = T2p + T2A;
T2Y = T2M + T2X;
Tfz = T2B - T2Y;
TfA = Tdd + Tde;
TfB = Tdk + Tdj;
TfC = TfA - TfB;
{
E T7d, T7g, Tdi, Tdl;
T7d = T2j - T2o;
T7g = T7e - T7f;
T7h = T7d - T7g;
TaW = T7d + T7g;
Tdi = T2p - T2A;
Tdl = Tdj - Tdk;
Tdm = Tdi - Tdl;
TeL = Tdi + Tdl;
}
{
E T7m, T7r, T7z, T7A;
T7m = T7i - T7l;
T7r = T7n + T7q;
T7s = KP707106781 * (T7m + T7r);
TaU = KP707106781 * (T7r - T7m);
T7z = T7i + T7l;
T7A = T7q - T7n;
T7B = KP707106781 * (T7z + T7A);
TaX = KP707106781 * (T7z - T7A);
}
{
E Tdf, Tdg, T7w, T7x;
Tdf = Tdd - Tde;
Tdg = T2M - T2X;
Tdh = Tdf - Tdg;
TeM = Tdf + Tdg;
T7w = T7u - T7v;
T7x = T2u - T2z;
T7y = T7w + T7x;
TaT = T7w - T7x;
}
}
{
E T4D, T9e, T4I, T9f, T4J, TdR, T4O, T8A, T4T, T8B, T4U, TdS, T56, Tea, T8E;
E T8H, T5h, Te9, T8J, T8M;
{
E T4A, T4C, T4z, T4B;
T4A = cr[WS(rs, 63)];
T4C = ci[WS(rs, 63)];
T4z = W[124];
T4B = W[125];
T4D = FMA(T4z, T4A, T4B * T4C);
T9e = FNMS(T4B, T4A, T4z * T4C);
}
{
E T4F, T4H, T4E, T4G;
T4F = cr[WS(rs, 31)];
T4H = ci[WS(rs, 31)];
T4E = W[60];
T4G = W[61];
T4I = FMA(T4E, T4F, T4G * T4H);
T9f = FNMS(T4G, T4F, T4E * T4H);
}
T4J = T4D + T4I;
TdR = T9e + T9f;
{
E T4L, T4N, T4K, T4M;
T4L = cr[WS(rs, 15)];
T4N = ci[WS(rs, 15)];
T4K = W[28];
T4M = W[29];
T4O = FMA(T4K, T4L, T4M * T4N);
T8A = FNMS(T4M, T4L, T4K * T4N);
}
{
E T4Q, T4S, T4P, T4R;
T4Q = cr[WS(rs, 47)];
T4S = ci[WS(rs, 47)];
T4P = W[92];
T4R = W[93];
T4T = FMA(T4P, T4Q, T4R * T4S);
T8B = FNMS(T4R, T4Q, T4P * T4S);
}
T4U = T4O + T4T;
TdS = T8A + T8B;
{
E T50, T8F, T55, T8G;
{
E T4X, T4Z, T4W, T4Y;
T4X = cr[WS(rs, 7)];
T4Z = ci[WS(rs, 7)];
T4W = W[12];
T4Y = W[13];
T50 = FMA(T4W, T4X, T4Y * T4Z);
T8F = FNMS(T4Y, T4X, T4W * T4Z);
}
{
E T52, T54, T51, T53;
T52 = cr[WS(rs, 39)];
T54 = ci[WS(rs, 39)];
T51 = W[76];
T53 = W[77];
T55 = FMA(T51, T52, T53 * T54);
T8G = FNMS(T53, T52, T51 * T54);
}
T56 = T50 + T55;
Tea = T8F + T8G;
T8E = T50 - T55;
T8H = T8F - T8G;
}
{
E T5b, T8K, T5g, T8L;
{
E T58, T5a, T57, T59;
T58 = cr[WS(rs, 55)];
T5a = ci[WS(rs, 55)];
T57 = W[108];
T59 = W[109];
T5b = FMA(T57, T58, T59 * T5a);
T8K = FNMS(T59, T58, T57 * T5a);
}
{
E T5d, T5f, T5c, T5e;
T5d = cr[WS(rs, 23)];
T5f = ci[WS(rs, 23)];
T5c = W[44];
T5e = W[45];
T5g = FMA(T5c, T5d, T5e * T5f);
T8L = FNMS(T5e, T5d, T5c * T5f);
}
T5h = T5b + T5g;
Te9 = T8K + T8L;
T8J = T5b - T5g;
T8M = T8K - T8L;
}
{
E T4V, T5i, Te8, Teb;
T4V = T4J + T4U;
T5i = T56 + T5h;
T5j = T4V + T5i;
TfR = T4V - T5i;
Te8 = T4J - T4U;
Teb = Te9 - Tea;
Tec = Te8 - Teb;
TeX = Te8 + Teb;
}
{
E TfW, TfX, T8z, T8C;
TfW = TdR + TdS;
TfX = Tea + Te9;
TfY = TfW - TfX;
Tgy = TfW + TfX;
T8z = T4D - T4I;
T8C = T8A - T8B;
T8D = T8z - T8C;
Tbl = T8z + T8C;
}
{
E T8I, T8N, T9j, T9k;
T8I = T8E - T8H;
T8N = T8J + T8M;
T8O = KP707106781 * (T8I + T8N);
Tbx = KP707106781 * (T8N - T8I);
T9j = T8E + T8H;
T9k = T8M - T8J;
T9l = KP707106781 * (T9j + T9k);
Tbm = KP707106781 * (T9j - T9k);
}
{
E TdT, TdU, T9g, T9h;
TdT = TdR - TdS;
TdU = T56 - T5h;
TdV = TdT - TdU;
Tf0 = TdT + TdU;
T9g = T9e - T9f;
T9h = T4O - T4T;
T9i = T9g + T9h;
Tbw = T9g - T9h;
}
}
{
E T36, T7G, T3b, T7H, T3c, TdH, T3h, T8m, T3m, T8n, T3n, TdI, T3z, Tds, T7L;
E T7O, T3K, Tdr, T7S, T7T;
{
E T33, T35, T32, T34;
T33 = cr[WS(rs, 1)];
T35 = ci[WS(rs, 1)];
T32 = W[0];
T34 = W[1];
T36 = FMA(T32, T33, T34 * T35);
T7G = FNMS(T34, T33, T32 * T35);
}
{
E T38, T3a, T37, T39;
T38 = cr[WS(rs, 33)];
T3a = ci[WS(rs, 33)];
T37 = W[64];
T39 = W[65];
T3b = FMA(T37, T38, T39 * T3a);
T7H = FNMS(T39, T38, T37 * T3a);
}
T3c = T36 + T3b;
TdH = T7G + T7H;
{
E T3e, T3g, T3d, T3f;
T3e = cr[WS(rs, 17)];
T3g = ci[WS(rs, 17)];
T3d = W[32];
T3f = W[33];
T3h = FMA(T3d, T3e, T3f * T3g);
T8m = FNMS(T3f, T3e, T3d * T3g);
}
{
E T3j, T3l, T3i, T3k;
T3j = cr[WS(rs, 49)];
T3l = ci[WS(rs, 49)];
T3i = W[96];
T3k = W[97];
T3m = FMA(T3i, T3j, T3k * T3l);
T8n = FNMS(T3k, T3j, T3i * T3l);
}
T3n = T3h + T3m;
TdI = T8m + T8n;
{
E T3t, T7M, T3y, T7N;
{
E T3q, T3s, T3p, T3r;
T3q = cr[WS(rs, 9)];
T3s = ci[WS(rs, 9)];
T3p = W[16];
T3r = W[17];
T3t = FMA(T3p, T3q, T3r * T3s);
T7M = FNMS(T3r, T3q, T3p * T3s);
}
{
E T3v, T3x, T3u, T3w;
T3v = cr[WS(rs, 41)];
T3x = ci[WS(rs, 41)];
T3u = W[80];
T3w = W[81];
T3y = FMA(T3u, T3v, T3w * T3x);
T7N = FNMS(T3w, T3v, T3u * T3x);
}
T3z = T3t + T3y;
Tds = T7M + T7N;
T7L = T3t - T3y;
T7O = T7M - T7N;
}
{
E T3E, T7Q, T3J, T7R;
{
E T3B, T3D, T3A, T3C;
T3B = cr[WS(rs, 57)];
T3D = ci[WS(rs, 57)];
T3A = W[112];
T3C = W[113];
T3E = FMA(T3A, T3B, T3C * T3D);
T7Q = FNMS(T3C, T3B, T3A * T3D);
}
{
E T3G, T3I, T3F, T3H;
T3G = cr[WS(rs, 25)];
T3I = ci[WS(rs, 25)];
T3F = W[48];
T3H = W[49];
T3J = FMA(T3F, T3G, T3H * T3I);
T7R = FNMS(T3H, T3G, T3F * T3I);
}
T3K = T3E + T3J;
Tdr = T7Q + T7R;
T7S = T7Q - T7R;
T7T = T3E - T3J;
}
{
E T3o, T3L, TdJ, TdK;
T3o = T3c + T3n;
T3L = T3z + T3K;
T3M = T3o + T3L;
TfL = T3o - T3L;
TdJ = TdH - TdI;
TdK = T3z - T3K;
TdL = TdJ - TdK;
TeT = TdJ + TdK;
}
{
E TfG, TfH, T7I, T7J;
TfG = TdH + TdI;
TfH = Tds + Tdr;
TfI = TfG - TfH;
Tgt = TfG + TfH;
T7I = T7G - T7H;
T7J = T3h - T3m;
T7K = T7I + T7J;
Tbd = T7I - T7J;
}
{
E T7P, T7U, T8q, T8r;
T7P = T7L + T7O;
T7U = T7S - T7T;
T7V = KP707106781 * (T7P + T7U);
Tb3 = KP707106781 * (T7P - T7U);
T8q = T7L - T7O;
T8r = T7T + T7S;
T8s = KP707106781 * (T8q + T8r);
Tbe = KP707106781 * (T8r - T8q);
}
{
E Tdq, Tdt, T8l, T8o;
Tdq = T3c - T3n;
Tdt = Tdr - Tds;
Tdu = Tdq - Tdt;
TeQ = Tdq + Tdt;
T8l = T36 - T3b;
T8o = T8m - T8n;
T8p = T8l - T8o;
Tb2 = T8l + T8o;
}
}
{
E T3X, Tdw, T7Z, T82, T4v, TdB, T8b, T8g, T48, Tdx, T80, T85, T4k, TdA, T8a;
E T8d;
{
E T3R, T7X, T3W, T7Y;
{
E T3O, T3Q, T3N, T3P;
T3O = cr[WS(rs, 5)];
T3Q = ci[WS(rs, 5)];
T3N = W[8];
T3P = W[9];
T3R = FMA(T3N, T3O, T3P * T3Q);
T7X = FNMS(T3P, T3O, T3N * T3Q);
}
{
E T3T, T3V, T3S, T3U;
T3T = cr[WS(rs, 37)];
T3V = ci[WS(rs, 37)];
T3S = W[72];
T3U = W[73];
T3W = FMA(T3S, T3T, T3U * T3V);
T7Y = FNMS(T3U, T3T, T3S * T3V);
}
T3X = T3R + T3W;
Tdw = T7X + T7Y;
T7Z = T7X - T7Y;
T82 = T3R - T3W;
}
{
E T4p, T8e, T4u, T8f;
{
E T4m, T4o, T4l, T4n;
T4m = cr[WS(rs, 13)];
T4o = ci[WS(rs, 13)];
T4l = W[24];
T4n = W[25];
T4p = FMA(T4l, T4m, T4n * T4o);
T8e = FNMS(T4n, T4m, T4l * T4o);
}
{
E T4r, T4t, T4q, T4s;
T4r = cr[WS(rs, 45)];
T4t = ci[WS(rs, 45)];
T4q = W[88];
T4s = W[89];
T4u = FMA(T4q, T4r, T4s * T4t);
T8f = FNMS(T4s, T4r, T4q * T4t);
}
T4v = T4p + T4u;
TdB = T8e + T8f;
T8b = T4p - T4u;
T8g = T8e - T8f;
}
{
E T42, T83, T47, T84;
{
E T3Z, T41, T3Y, T40;
T3Z = cr[WS(rs, 21)];
T41 = ci[WS(rs, 21)];
T3Y = W[40];
T40 = W[41];
T42 = FMA(T3Y, T3Z, T40 * T41);
T83 = FNMS(T40, T3Z, T3Y * T41);
}
{
E T44, T46, T43, T45;
T44 = cr[WS(rs, 53)];
T46 = ci[WS(rs, 53)];
T43 = W[104];
T45 = W[105];
T47 = FMA(T43, T44, T45 * T46);
T84 = FNMS(T45, T44, T43 * T46);
}
T48 = T42 + T47;
Tdx = T83 + T84;
T80 = T42 - T47;
T85 = T83 - T84;
}
{
E T4e, T88, T4j, T89;
{
E T4b, T4d, T4a, T4c;
T4b = cr[WS(rs, 61)];
T4d = ci[WS(rs, 61)];
T4a = W[120];
T4c = W[121];
T4e = FMA(T4a, T4b, T4c * T4d);
T88 = FNMS(T4c, T4b, T4a * T4d);
}
{
E T4g, T4i, T4f, T4h;
T4g = cr[WS(rs, 29)];
T4i = ci[WS(rs, 29)];
T4f = W[56];
T4h = W[57];
T4j = FMA(T4f, T4g, T4h * T4i);
T89 = FNMS(T4h, T4g, T4f * T4i);
}
T4k = T4e + T4j;
TdA = T88 + T89;
T8a = T88 - T89;
T8d = T4e - T4j;
}
{
E T49, T4w, TdC, TdD;
T49 = T3X + T48;
T4w = T4k + T4v;
T4x = T49 + T4w;
TfJ = T49 - T4w;
TdC = TdA - TdB;
TdD = T4k - T4v;
TdE = TdC - TdD;
TdM = TdD + TdC;
}
{
E TfM, TfN, T81, T86;
TfM = TdA + TdB;
TfN = Tdw + Tdx;
TfO = TfM - TfN;
Tgu = TfN + TfM;
T81 = T7Z + T80;
T86 = T82 - T85;
T87 = FMA(KP923879532, T81, KP382683432 * T86);
T8u = FNMS(KP382683432, T81, KP923879532 * T86);
}
{
E T8c, T8h, Tb8, Tb9;
T8c = T8a + T8b;
T8h = T8d - T8g;
T8i = FNMS(KP382683432, T8h, KP923879532 * T8c);
T8v = FMA(KP382683432, T8c, KP923879532 * T8h);
Tb8 = T8d + T8g;
Tb9 = T8a - T8b;
Tba = FNMS(KP382683432, Tb9, KP923879532 * Tb8);
Tbh = FMA(KP923879532, Tb9, KP382683432 * Tb8);
}
{
E Tdv, Tdy, Tb5, Tb6;
Tdv = T3X - T48;
Tdy = Tdw - Tdx;
Tdz = Tdv + Tdy;
TdN = Tdv - Tdy;
Tb5 = T7Z - T80;
Tb6 = T82 + T85;
Tb7 = FMA(KP382683432, Tb5, KP923879532 * Tb6);
Tbg = FNMS(KP382683432, Tb6, KP923879532 * Tb5);
}
}
{
E T5u, Te2, T8Q, T8X, T62, TdY, T94, T99, T5F, Te3, T8T, T8Y, T5R, TdX, T93;
E T96;
{
E T5o, T8V, T5t, T8W;
{
E T5l, T5n, T5k, T5m;
T5l = cr[WS(rs, 3)];
T5n = ci[WS(rs, 3)];
T5k = W[4];
T5m = W[5];
T5o = FMA(T5k, T5l, T5m * T5n);
T8V = FNMS(T5m, T5l, T5k * T5n);
}
{
E T5q, T5s, T5p, T5r;
T5q = cr[WS(rs, 35)];
T5s = ci[WS(rs, 35)];
T5p = W[68];
T5r = W[69];
T5t = FMA(T5p, T5q, T5r * T5s);
T8W = FNMS(T5r, T5q, T5p * T5s);
}
T5u = T5o + T5t;
Te2 = T8V + T8W;
T8Q = T5o - T5t;
T8X = T8V - T8W;
}
{
E T5W, T97, T61, T98;
{
E T5T, T5V, T5S, T5U;
T5T = cr[WS(rs, 11)];
T5V = ci[WS(rs, 11)];
T5S = W[20];
T5U = W[21];
T5W = FMA(T5S, T5T, T5U * T5V);
T97 = FNMS(T5U, T5T, T5S * T5V);
}
{
E T5Y, T60, T5X, T5Z;
T5Y = cr[WS(rs, 43)];
T60 = ci[WS(rs, 43)];
T5X = W[84];
T5Z = W[85];
T61 = FMA(T5X, T5Y, T5Z * T60);
T98 = FNMS(T5Z, T5Y, T5X * T60);
}
T62 = T5W + T61;
TdY = T97 + T98;
T94 = T5W - T61;
T99 = T97 - T98;
}
{
E T5z, T8R, T5E, T8S;
{
E T5w, T5y, T5v, T5x;
T5w = cr[WS(rs, 19)];
T5y = ci[WS(rs, 19)];
T5v = W[36];
T5x = W[37];
T5z = FMA(T5v, T5w, T5x * T5y);
T8R = FNMS(T5x, T5w, T5v * T5y);
}
{
E T5B, T5D, T5A, T5C;
T5B = cr[WS(rs, 51)];
T5D = ci[WS(rs, 51)];
T5A = W[100];
T5C = W[101];
T5E = FMA(T5A, T5B, T5C * T5D);
T8S = FNMS(T5C, T5B, T5A * T5D);
}
T5F = T5z + T5E;
Te3 = T8R + T8S;
T8T = T8R - T8S;
T8Y = T5z - T5E;
}
{
E T5L, T91, T5Q, T92;
{
E T5I, T5K, T5H, T5J;
T5I = cr[WS(rs, 59)];
T5K = ci[WS(rs, 59)];
T5H = W[116];
T5J = W[117];
T5L = FMA(T5H, T5I, T5J * T5K);
T91 = FNMS(T5J, T5I, T5H * T5K);
}
{
E T5N, T5P, T5M, T5O;
T5N = cr[WS(rs, 27)];
T5P = ci[WS(rs, 27)];
T5M = W[52];
T5O = W[53];
T5Q = FMA(T5M, T5N, T5O * T5P);
T92 = FNMS(T5O, T5N, T5M * T5P);
}
T5R = T5L + T5Q;
TdX = T91 + T92;
T93 = T91 - T92;
T96 = T5L - T5Q;
}
{
E T5G, T63, Te1, Te4;
T5G = T5u + T5F;
T63 = T5R + T62;
T64 = T5G + T63;
TfZ = T5G - T63;
Te1 = T5u - T5F;
Te4 = Te2 - Te3;
Te5 = Te1 - Te4;
Ted = Te1 + Te4;
}
{
E TfS, TfT, T8U, T8Z;
TfS = TdX + TdY;
TfT = Te2 + Te3;
TfU = TfS - TfT;
Tgz = TfT + TfS;
T8U = T8Q - T8T;
T8Z = T8X + T8Y;
T90 = FNMS(KP382683432, T8Z, KP923879532 * T8U);
T9n = FMA(KP923879532, T8Z, KP382683432 * T8U);
}
{
E T95, T9a, Tbr, Tbs;
T95 = T93 + T94;
T9a = T96 - T99;
T9b = FMA(KP382683432, T95, KP923879532 * T9a);
T9o = FNMS(KP382683432, T9a, KP923879532 * T95);
Tbr = T96 + T99;
Tbs = T93 - T94;
Tbt = FNMS(KP382683432, Tbs, KP923879532 * Tbr);
TbA = FMA(KP923879532, Tbs, KP382683432 * Tbr);
}
{
E TdW, TdZ, Tbo, Tbp;
TdW = T5R - T62;
TdZ = TdX - TdY;
Te0 = TdW + TdZ;
Tee = TdZ - TdW;
Tbo = T8X - T8Y;
Tbp = T8Q + T8T;
Tbq = FMA(KP382683432, Tbo, KP923879532 * Tbp);
Tbz = FNMS(KP382683432, Tbp, KP923879532 * Tbo);
}
}
{
E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq;
E TgM;
{
E TH, T1s, TgI, TgJ;
TH = Tj + TG;
T1s = T14 + T1r;
T1t = TH + T1s;
Tgn = TH - T1s;
TgI = Tgy + Tgz;
TgJ = Tgt + Tgu;
TgK = TgI - TgJ;
TgL = TgJ + TgI;
}
{
E TgN, TgU, T2e, T2Z;
TgN = Tfr + Tfq;
TgU = TgO + TgT;
TgV = TgN + TgU;
Th1 = TgU - TgN;
T2e = T1Q + T2d;
T2Z = T2B + T2Y;
T30 = T2e + T2Z;
Th0 = T2e - T2Z;
}
{
E T4y, T65, Tgs, Tgv;
T4y = T3M + T4x;
T65 = T5j + T64;
T66 = T4y + T65;
TgX = T65 - T4y;
Tgs = T3M - T4x;
Tgv = Tgt - Tgu;
Tgw = Tgs + Tgv;
TgE = Tgs - Tgv;
}
{
E Tgx, TgA, Tgo, Tgp;
Tgx = T5j - T64;
TgA = Tgy - Tgz;
TgB = Tgx - TgA;
TgF = Tgx + TgA;
Tgo = TfA + TfB;
Tgp = Tfv + Tfw;
Tgq = Tgo - Tgp;
TgM = Tgp + Tgo;
}
{
E T31, TgW, TgY, TgH;
T31 = T1t + T30;
ci[WS(rs, 31)] = T31 - T66;
cr[0] = T31 + T66;
TgW = TgM + TgV;
cr[WS(rs, 32)] = TgL - TgW;
ci[WS(rs, 63)] = TgL + TgW;
TgY = TgV - TgM;
cr[WS(rs, 48)] = TgX - TgY;
ci[WS(rs, 47)] = TgX + TgY;
TgH = T1t - T30;
cr[WS(rs, 16)] = TgH - TgK;
ci[WS(rs, 15)] = TgH + TgK;
}
{
E Tgr, TgC, TgZ, Th2;
Tgr = Tgn - Tgq;
TgC = KP707106781 * (Tgw + TgB);
ci[WS(rs, 23)] = Tgr - TgC;
cr[WS(rs, 8)] = Tgr + TgC;
TgZ = KP707106781 * (TgB - Tgw);
Th2 = Th0 + Th1;
cr[WS(rs, 56)] = TgZ - Th2;
ci[WS(rs, 39)] = TgZ + Th2;
}
{
E Th3, Th4, TgD, TgG;
Th3 = KP707106781 * (TgF - TgE);
Th4 = Th1 - Th0;
cr[WS(rs, 40)] = Th3 - Th4;
ci[WS(rs, 55)] = Th3 + Th4;
TgD = Tgn + Tgq;
TgG = KP707106781 * (TgE + TgF);
cr[WS(rs, 24)] = TgD - TgG;
ci[WS(rs, 7)] = TgD + TgG;
}
}
{
E T6L, T9x, ThV, Ti1, T7E, Ti0, T9A, ThO, T8y, T9K, T9u, T9E, T9r, T9L, T9v;
E T9H;
{
E T6n, T6K, ThP, ThU;
T6n = T6b + T6m;
T6K = T6y + T6J;
T6L = T6n - T6K;
T9x = T6n + T6K;
ThP = T9O - T9P;
ThU = ThQ + ThT;
ThV = ThP + ThU;
Ti1 = ThU - ThP;
}
{
E T7c, T9y, T7D, T9z;
{
E T72, T7b, T7t, T7C;
T72 = T6Q + T71;
T7b = T77 + T7a;
T7c = FMA(KP195090322, T72, KP980785280 * T7b);
T9y = FNMS(KP195090322, T7b, KP980785280 * T72);
T7t = T7h + T7s;
T7C = T7y + T7B;
T7D = FNMS(KP980785280, T7C, KP195090322 * T7t);
T9z = FMA(KP980785280, T7t, KP195090322 * T7C);
}
T7E = T7c + T7D;
Ti0 = T9z - T9y;
T9A = T9y + T9z;
ThO = T7c - T7D;
}
{
E T8k, T9D, T8x, T9C;
{
E T7W, T8j, T8t, T8w;
T7W = T7K + T7V;
T8j = T87 + T8i;
T8k = T7W - T8j;
T9D = T7W + T8j;
T8t = T8p + T8s;
T8w = T8u + T8v;
T8x = T8t - T8w;
T9C = T8t + T8w;
}
T8y = FMA(KP634393284, T8k, KP773010453 * T8x);
T9K = FMA(KP995184726, T9D, KP098017140 * T9C);
T9u = FNMS(KP773010453, T8k, KP634393284 * T8x);
T9E = FNMS(KP098017140, T9D, KP995184726 * T9C);
}
{
E T9d, T9G, T9q, T9F;
{
E T8P, T9c, T9m, T9p;
T8P = T8D + T8O;
T9c = T90 + T9b;
T9d = T8P - T9c;
T9G = T8P + T9c;
T9m = T9i + T9l;
T9p = T9n + T9o;
T9q = T9m - T9p;
T9F = T9m + T9p;
}
T9r = FNMS(KP634393284, T9q, KP773010453 * T9d);
T9L = FNMS(KP995184726, T9F, KP098017140 * T9G);
T9v = FMA(KP773010453, T9q, KP634393284 * T9d);
T9H = FMA(KP098017140, T9F, KP995184726 * T9G);
}
{
E T7F, T9s, ThZ, Ti2;
T7F = T6L + T7E;
T9s = T8y + T9r;
ci[WS(rs, 24)] = T7F - T9s;
cr[WS(rs, 7)] = T7F + T9s;
ThZ = T9v - T9u;
Ti2 = Ti0 + Ti1;
cr[WS(rs, 39)] = ThZ - Ti2;
ci[WS(rs, 56)] = ThZ + Ti2;
}
{
E Ti3, Ti4, T9t, T9w;
Ti3 = T9r - T8y;
Ti4 = Ti1 - Ti0;
cr[WS(rs, 55)] = Ti3 - Ti4;
ci[WS(rs, 40)] = Ti3 + Ti4;
T9t = T6L - T7E;
T9w = T9u + T9v;
cr[WS(rs, 23)] = T9t - T9w;
ci[WS(rs, 8)] = T9t + T9w;
}
{
E T9B, T9I, ThN, ThW;
T9B = T9x + T9A;
T9I = T9E + T9H;
cr[WS(rs, 31)] = T9B - T9I;
ci[0] = T9B + T9I;
ThN = T9L - T9K;
ThW = ThO + ThV;
cr[WS(rs, 63)] = ThN - ThW;
ci[WS(rs, 32)] = ThN + ThW;
}
{
E ThX, ThY, T9J, T9M;
ThX = T9H - T9E;
ThY = ThV - ThO;
cr[WS(rs, 47)] = ThX - ThY;
ci[WS(rs, 48)] = ThX + ThY;
T9J = T9x - T9A;
T9M = T9K + T9L;
ci[WS(rs, 16)] = T9J - T9M;
cr[WS(rs, 15)] = T9J + T9M;
}
}
{
E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1;
E Tg5;
{
E Tfp, Tfs, Tgf, Tgg;
Tfp = Tj - TG;
Tfs = Tfq - Tfr;
Tft = Tfp - Tfs;
Tg7 = Tfp + Tfs;
Tgf = TfY + TfZ;
Tgg = TfR + TfU;
Tgh = FMA(KP382683432, Tgf, KP923879532 * Tgg);
Tgl = FNMS(KP923879532, Tgf, KP382683432 * Tgg);
}
{
E Th7, Th8, Tfy, TfD;
Th7 = T14 - T1r;
Th8 = TgT - TgO;
Th9 = Th7 + Th8;
Thf = Th8 - Th7;
Tfy = Tfu + Tfx;
TfD = Tfz - TfC;
TfE = KP707106781 * (Tfy + TfD);
Th6 = KP707106781 * (Tfy - TfD);
}
{
E TfK, TfP, Tg8, Tg9;
TfK = TfI - TfJ;
TfP = TfL - TfO;
TfQ = FMA(KP382683432, TfK, KP923879532 * TfP);
Tg4 = FNMS(KP923879532, TfK, KP382683432 * TfP);
Tg8 = Tfu - Tfx;
Tg9 = Tfz + TfC;
Tga = KP707106781 * (Tg8 + Tg9);
The = KP707106781 * (Tg9 - Tg8);
}
{
E Tgc, Tgd, TfV, Tg0;
Tgc = TfL + TfO;
Tgd = TfI + TfJ;
Tge = FNMS(KP382683432, Tgd, KP923879532 * Tgc);
Tgk = FMA(KP923879532, Tgd, KP382683432 * Tgc);
TfV = TfR - TfU;
Tg0 = TfY - TfZ;
Tg1 = FNMS(KP382683432, Tg0, KP923879532 * TfV);
Tg5 = FMA(KP923879532, Tg0, KP382683432 * TfV);
}
{
E TfF, Tg2, Thd, Thg;
TfF = Tft + TfE;
Tg2 = TfQ + Tg1;
ci[WS(rs, 27)] = TfF - Tg2;
cr[WS(rs, 4)] = TfF + Tg2;
Thd = Tg5 - Tg4;
Thg = The + Thf;
cr[WS(rs, 36)] = Thd - Thg;
ci[WS(rs, 59)] = Thd + Thg;
}
{
E Thh, Thi, Tg3, Tg6;
Thh = Tg1 - TfQ;
Thi = Thf - The;
cr[WS(rs, 52)] = Thh - Thi;
ci[WS(rs, 43)] = Thh + Thi;
Tg3 = Tft - TfE;
Tg6 = Tg4 + Tg5;
cr[WS(rs, 20)] = Tg3 - Tg6;
ci[WS(rs, 11)] = Tg3 + Tg6;
}
{
E Tgb, Tgi, Th5, Tha;
Tgb = Tg7 + Tga;
Tgi = Tge + Tgh;
cr[WS(rs, 28)] = Tgb - Tgi;
ci[WS(rs, 3)] = Tgb + Tgi;
Th5 = Tgl - Tgk;
Tha = Th6 + Th9;
cr[WS(rs, 60)] = Th5 - Tha;
ci[WS(rs, 35)] = Th5 + Tha;
}
{
E Thb, Thc, Tgj, Tgm;
Thb = Tgh - Tge;
Thc = Th9 - Th6;
cr[WS(rs, 44)] = Thb - Thc;
ci[WS(rs, 51)] = Thb + Thc;
Tgj = Tg7 - Tga;
Tgm = Tgk + Tgl;
ci[WS(rs, 19)] = Tgj - Tgm;
cr[WS(rs, 12)] = Tgj + Tgm;
}
}
{
E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6;
E Tfg;
{
E TeD, TeG, Tfa, Tfb;
TeD = TcL + TcO;
TeG = KP707106781 * (TeE + TeF);
TeH = TeD - TeG;
Tf9 = TeD + TeG;
{
E TeK, TeN, Thl, Tho;
TeK = FMA(KP923879532, TeI, KP382683432 * TeJ);
TeN = FNMS(KP923879532, TeM, KP382683432 * TeL);
TeO = TeK + TeN;
Thk = TeK - TeN;
Thl = KP707106781 * (TcU - TcZ);
Tho = Thm + Thn;
Thp = Thl + Tho;
Thv = Tho - Thl;
}
Tfa = FNMS(KP382683432, TeI, KP923879532 * TeJ);
Tfb = FMA(KP382683432, TeM, KP923879532 * TeL);
Tfc = Tfa + Tfb;
Thu = Tfb - Tfa;
{
E TeZ, Tfh, Tf2, Tfi, TeY, Tf1;
TeY = KP707106781 * (Te5 + Te0);
TeZ = TeX - TeY;
Tfh = TeX + TeY;
Tf1 = KP707106781 * (Ted + Tee);
Tf2 = Tf0 - Tf1;
Tfi = Tf0 + Tf1;
Tf3 = FNMS(KP555570233, Tf2, KP831469612 * TeZ);
Tfn = FMA(KP980785280, Tfh, KP195090322 * Tfi);
Tf7 = FMA(KP555570233, TeZ, KP831469612 * Tf2);
Tfj = FNMS(KP980785280, Tfi, KP195090322 * Tfh);
}
{
E TeS, Tfe, TeV, Tff, TeR, TeU;
TeR = KP707106781 * (TdN + TdM);
TeS = TeQ - TeR;
Tfe = TeQ + TeR;
TeU = KP707106781 * (Tdz + TdE);
TeV = TeT - TeU;
Tff = TeT + TeU;
TeW = FMA(KP831469612, TeS, KP555570233 * TeV);
Tfm = FNMS(KP195090322, Tff, KP980785280 * Tfe);
Tf6 = FNMS(KP831469612, TeV, KP555570233 * TeS);
Tfg = FMA(KP195090322, Tfe, KP980785280 * Tff);
}
}
{
E TeP, Tf4, Tht, Thw;
TeP = TeH + TeO;
Tf4 = TeW + Tf3;
ci[WS(rs, 25)] = TeP - Tf4;
cr[WS(rs, 6)] = TeP + Tf4;
Tht = Tf7 - Tf6;
Thw = Thu + Thv;
cr[WS(rs, 38)] = Tht - Thw;
ci[WS(rs, 57)] = Tht + Thw;
}
{
E Thx, Thy, Tf5, Tf8;
Thx = Tf3 - TeW;
Thy = Thv - Thu;
cr[WS(rs, 54)] = Thx - Thy;
ci[WS(rs, 41)] = Thx + Thy;
Tf5 = TeH - TeO;
Tf8 = Tf6 + Tf7;
cr[WS(rs, 22)] = Tf5 - Tf8;
ci[WS(rs, 9)] = Tf5 + Tf8;
}
{
E Tfd, Tfk, Thj, Thq;
Tfd = Tf9 - Tfc;
Tfk = Tfg + Tfj;
ci[WS(rs, 17)] = Tfd - Tfk;
cr[WS(rs, 14)] = Tfd + Tfk;
Thj = Tfj - Tfg;
Thq = Thk + Thp;
cr[WS(rs, 62)] = Thj - Thq;
ci[WS(rs, 33)] = Thj + Thq;
}
{
E Thr, Ths, Tfl, Tfo;
Thr = Tfn - Tfm;
Ths = Thp - Thk;
cr[WS(rs, 46)] = Thr - Ths;
ci[WS(rs, 49)] = Thr + Ths;
Tfl = Tf9 + Tfc;
Tfo = Tfm + Tfn;
cr[WS(rs, 30)] = Tfl - Tfo;
ci[WS(rs, 1)] = Tfl + Tfo;
}
}
{
E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek;
E Teu;
{
E TcP, Td0, Teo, Tep;
TcP = TcL - TcO;
Td0 = KP707106781 * (TcU + TcZ);
Td1 = TcP - Td0;
Ten = TcP + Td0;
{
E Tdc, Tdn, ThB, ThC;
Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6);
Tdn = FMA(KP923879532, Tdh, KP382683432 * Tdm);
Tdo = Tdc + Tdn;
ThA = Tdn - Tdc;
ThB = KP707106781 * (TeF - TeE);
ThC = Thn - Thm;
ThD = ThB + ThC;
ThJ = ThC - ThB;
}
Teo = FMA(KP382683432, Tdb, KP923879532 * Td6);
Tep = FNMS(KP382683432, Tdh, KP923879532 * Tdm);
Teq = Teo + Tep;
ThI = Teo - Tep;
{
E Te7, Tew, Teg, Tev, Te6, Tef;
Te6 = KP707106781 * (Te0 - Te5);
Te7 = TdV - Te6;
Tew = TdV + Te6;
Tef = KP707106781 * (Ted - Tee);
Teg = Tec - Tef;
Tev = Tec + Tef;
Teh = FMA(KP555570233, Te7, KP831469612 * Teg);
TeB = FMA(KP980785280, Tew, KP195090322 * Tev);
Tel = FNMS(KP831469612, Te7, KP555570233 * Teg);
Tex = FNMS(KP195090322, Tew, KP980785280 * Tev);
}
{
E TdG, Tet, TdP, Tes, TdF, TdO;
TdF = KP707106781 * (Tdz - TdE);
TdG = Tdu - TdF;
Tet = Tdu + TdF;
TdO = KP707106781 * (TdM - TdN);
TdP = TdL - TdO;
Tes = TdL + TdO;
TdQ = FNMS(KP555570233, TdP, KP831469612 * TdG);
TeA = FNMS(KP980785280, Tes, KP195090322 * Tet);
Tek = FMA(KP831469612, TdP, KP555570233 * TdG);
Teu = FMA(KP195090322, Tes, KP980785280 * Tet);
}
}
{
E Tdp, Tei, ThH, ThK;
Tdp = Td1 + Tdo;
Tei = TdQ + Teh;
cr[WS(rs, 26)] = Tdp - Tei;
ci[WS(rs, 5)] = Tdp + Tei;
ThH = Tel - Tek;
ThK = ThI + ThJ;
cr[WS(rs, 58)] = ThH - ThK;
ci[WS(rs, 37)] = ThH + ThK;
}
{
E ThL, ThM, Tej, Tem;
ThL = Teh - TdQ;
ThM = ThJ - ThI;
cr[WS(rs, 42)] = ThL - ThM;
ci[WS(rs, 53)] = ThL + ThM;
Tej = Td1 - Tdo;
Tem = Tek + Tel;
ci[WS(rs, 21)] = Tej - Tem;
cr[WS(rs, 10)] = Tej + Tem;
}
{
E Ter, Tey, Thz, ThE;
Ter = Ten + Teq;
Tey = Teu + Tex;
ci[WS(rs, 29)] = Ter - Tey;
cr[WS(rs, 2)] = Ter + Tey;
Thz = TeB - TeA;
ThE = ThA + ThD;
cr[WS(rs, 34)] = Thz - ThE;
ci[WS(rs, 61)] = Thz + ThE;
}
{
E ThF, ThG, Tez, TeC;
ThF = Tex - Teu;
ThG = ThD - ThA;
cr[WS(rs, 50)] = ThF - ThG;
ci[WS(rs, 45)] = ThF + ThG;
Tez = Ten - Teq;
TeC = TeA + TeB;
cr[WS(rs, 18)] = Tez - TeC;
ci[WS(rs, 13)] = Tez + TeC;
}
}
{
E Tc3, Tcv, TiD, TiJ, Tca, TiI, Tcy, TiA, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct;
E TcF;
{
E TbZ, Tc2, TiB, TiC;
TbZ = Taz - TaC;
Tc2 = Tc0 + Tc1;
Tc3 = TbZ - Tc2;
Tcv = TbZ + Tc2;
TiB = TaG - TaJ;
TiC = Tin - Tim;
TiD = TiB + TiC;
TiJ = TiC - TiB;
}
{
E Tc6, Tcw, Tc9, Tcx;
{
E Tc4, Tc5, Tc7, Tc8;
Tc4 = TaP - TaQ;
Tc5 = TaM - TaN;
Tc6 = FMA(KP831469612, Tc4, KP555570233 * Tc5);
Tcw = FNMS(KP555570233, Tc4, KP831469612 * Tc5);
Tc7 = TaW - TaX;
Tc8 = TaT - TaU;
Tc9 = FNMS(KP831469612, Tc8, KP555570233 * Tc7);
Tcx = FMA(KP555570233, Tc8, KP831469612 * Tc7);
}
Tca = Tc6 + Tc9;
TiI = Tcx - Tcw;
Tcy = Tcw + Tcx;
TiA = Tc6 - Tc9;
}
{
E Tce, TcB, Tch, TcA;
{
E Tcc, Tcd, Tcf, Tcg;
Tcc = Tbd - Tbe;
Tcd = Tb7 - Tba;
Tce = Tcc - Tcd;
TcB = Tcc + Tcd;
Tcf = Tb2 - Tb3;
Tcg = Tbh - Tbg;
Tch = Tcf - Tcg;
TcA = Tcf + Tcg;
}
Tci = FMA(KP471396736, Tce, KP881921264 * Tch);
TcI = FMA(KP956940335, TcB, KP290284677 * TcA);
Tcs = FNMS(KP881921264, Tce, KP471396736 * Tch);
TcC = FNMS(KP290284677, TcB, KP956940335 * TcA);
}
{
E Tcl, TcE, Tco, TcD;
{
E Tcj, Tck, Tcm, Tcn;
Tcj = Tbl - Tbm;
Tck = TbA - Tbz;
Tcl = Tcj - Tck;
TcE = Tcj + Tck;
Tcm = Tbw - Tbx;
Tcn = Tbq - Tbt;
Tco = Tcm - Tcn;
TcD = Tcm + Tcn;
}
Tcp = FNMS(KP471396736, Tco, KP881921264 * Tcl);
TcJ = FNMS(KP956940335, TcD, KP290284677 * TcE);
Tct = FMA(KP881921264, Tco, KP471396736 * Tcl);
TcF = FMA(KP290284677, TcD, KP956940335 * TcE);
}
{
E Tcb, Tcq, TiH, TiK;
Tcb = Tc3 + Tca;
Tcq = Tci + Tcp;
ci[WS(rs, 26)] = Tcb - Tcq;
cr[WS(rs, 5)] = Tcb + Tcq;
TiH = Tct - Tcs;
TiK = TiI + TiJ;
cr[WS(rs, 37)] = TiH - TiK;
ci[WS(rs, 58)] = TiH + TiK;
}
{
E TiL, TiM, Tcr, Tcu;
TiL = Tcp - Tci;
TiM = TiJ - TiI;
cr[WS(rs, 53)] = TiL - TiM;
ci[WS(rs, 42)] = TiL + TiM;
Tcr = Tc3 - Tca;
Tcu = Tcs + Tct;
cr[WS(rs, 21)] = Tcr - Tcu;
ci[WS(rs, 10)] = Tcr + Tcu;
}
{
E Tcz, TcG, Tiz, TiE;
Tcz = Tcv + Tcy;
TcG = TcC + TcF;
cr[WS(rs, 29)] = Tcz - TcG;
ci[WS(rs, 2)] = Tcz + TcG;
Tiz = TcJ - TcI;
TiE = TiA + TiD;
cr[WS(rs, 61)] = Tiz - TiE;
ci[WS(rs, 34)] = Tiz + TiE;
}
{
E TiF, TiG, TcH, TcK;
TiF = TcF - TcC;
TiG = TiD - TiA;
cr[WS(rs, 45)] = TiF - TiG;
ci[WS(rs, 50)] = TiF + TiG;
TcH = Tcv - Tcy;
TcK = TcI + TcJ;
ci[WS(rs, 18)] = TcH - TcK;
cr[WS(rs, 13)] = TcH + TcK;
}
}
{
E TaL, TbJ, Tip, Tiv, Tb0, Tiu, TbM, Tik, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH;
E TbT;
{
E TaD, TaK, Til, Tio;
TaD = Taz + TaC;
TaK = TaG + TaJ;
TaL = TaD - TaK;
TbJ = TaD + TaK;
Til = Tc1 - Tc0;
Tio = Tim + Tin;
Tip = Til + Tio;
Tiv = Tio - Til;
}
{
E TaS, TbK, TaZ, TbL;
{
E TaO, TaR, TaV, TaY;
TaO = TaM + TaN;
TaR = TaP + TaQ;
TaS = FNMS(KP980785280, TaR, KP195090322 * TaO);
TbK = FMA(KP195090322, TaR, KP980785280 * TaO);
TaV = TaT + TaU;
TaY = TaW + TaX;
TaZ = FMA(KP980785280, TaV, KP195090322 * TaY);
TbL = FNMS(KP195090322, TaV, KP980785280 * TaY);
}
Tb0 = TaS + TaZ;
Tiu = TbK - TbL;
TbM = TbK + TbL;
Tik = TaZ - TaS;
}
{
E Tbc, TbO, Tbj, TbP;
{
E Tb4, Tbb, Tbf, Tbi;
Tb4 = Tb2 + Tb3;
Tbb = Tb7 + Tba;
Tbc = Tb4 - Tbb;
TbO = Tb4 + Tbb;
Tbf = Tbd + Tbe;
Tbi = Tbg + Tbh;
Tbj = Tbf - Tbi;
TbP = Tbf + Tbi;
}
Tbk = FMA(KP634393284, Tbc, KP773010453 * Tbj);
TbW = FNMS(KP995184726, TbP, KP098017140 * TbO);
TbG = FNMS(KP634393284, Tbj, KP773010453 * Tbc);
TbQ = FMA(KP995184726, TbO, KP098017140 * TbP);
}
{
E Tbv, TbR, TbC, TbS;
{
E Tbn, Tbu, Tby, TbB;
Tbn = Tbl + Tbm;
Tbu = Tbq + Tbt;
Tbv = Tbn - Tbu;
TbR = Tbn + Tbu;
Tby = Tbw + Tbx;
TbB = Tbz + TbA;
TbC = Tby - TbB;
TbS = Tby + TbB;
}
TbD = FNMS(KP773010453, TbC, KP634393284 * Tbv);
TbX = FMA(KP098017140, TbR, KP995184726 * TbS);
TbH = FMA(KP773010453, Tbv, KP634393284 * TbC);
TbT = FNMS(KP098017140, TbS, KP995184726 * TbR);
}
{
E Tb1, TbE, Tit, Tiw;
Tb1 = TaL - Tb0;
TbE = Tbk + TbD;
ci[WS(rs, 22)] = Tb1 - TbE;
cr[WS(rs, 9)] = Tb1 + TbE;
Tit = TbD - Tbk;
Tiw = Tiu + Tiv;
cr[WS(rs, 57)] = Tit - Tiw;
ci[WS(rs, 38)] = Tit + Tiw;
}
{
E Tix, Tiy, TbF, TbI;
Tix = TbH - TbG;
Tiy = Tiv - Tiu;
cr[WS(rs, 41)] = Tix - Tiy;
ci[WS(rs, 54)] = Tix + Tiy;
TbF = TaL + Tb0;
TbI = TbG + TbH;
cr[WS(rs, 25)] = TbF - TbI;
ci[WS(rs, 6)] = TbF + TbI;
}
{
E TbN, TbU, Tij, Tiq;
TbN = TbJ + TbM;
TbU = TbQ + TbT;
ci[WS(rs, 30)] = TbN - TbU;
cr[WS(rs, 1)] = TbN + TbU;
Tij = TbX - TbW;
Tiq = Tik + Tip;
cr[WS(rs, 33)] = Tij - Tiq;
ci[WS(rs, 62)] = Tij + Tiq;
}
{
E Tir, Tis, TbV, TbY;
Tir = TbT - TbQ;
Tis = Tip - Tik;
cr[WS(rs, 49)] = Tir - Tis;
ci[WS(rs, 46)] = Tir + Tis;
TbV = TbJ - TbM;
TbY = TbW + TbX;
cr[WS(rs, 17)] = TbV - TbY;
ci[WS(rs, 14)] = TbV + TbY;
}
}
{
E T9R, Taj, Ti9, Tif, T9Y, Tie, Tam, Ti6, Ta6, Taw, Tag, Taq, Tad, Tax, Tah;
E Tat;
{
E T9N, T9Q, Ti7, Ti8;
T9N = T6b - T6m;
T9Q = T9O + T9P;
T9R = T9N - T9Q;
Taj = T9N + T9Q;
Ti7 = T6J - T6y;
Ti8 = ThT - ThQ;
Ti9 = Ti7 + Ti8;
Tif = Ti8 - Ti7;
}
{
E T9U, Tak, T9X, Tal;
{
E T9S, T9T, T9V, T9W;
T9S = T6Q - T71;
T9T = T77 - T7a;
T9U = FNMS(KP831469612, T9T, KP555570233 * T9S);
Tak = FMA(KP831469612, T9S, KP555570233 * T9T);
T9V = T7h - T7s;
T9W = T7y - T7B;
T9X = FMA(KP555570233, T9V, KP831469612 * T9W);
Tal = FNMS(KP555570233, T9W, KP831469612 * T9V);
}
T9Y = T9U + T9X;
Tie = Tak - Tal;
Tam = Tak + Tal;
Ti6 = T9X - T9U;
}
{
E Ta2, Tao, Ta5, Tap;
{
E Ta0, Ta1, Ta3, Ta4;
Ta0 = T8p - T8s;
Ta1 = T87 - T8i;
Ta2 = Ta0 - Ta1;
Tao = Ta0 + Ta1;
Ta3 = T7K - T7V;
Ta4 = T8v - T8u;
Ta5 = Ta3 - Ta4;
Tap = Ta3 + Ta4;
}
Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5);
Taw = FNMS(KP956940335, Tap, KP290284677 * Tao);
Tag = FNMS(KP471396736, Ta5, KP881921264 * Ta2);
Taq = FMA(KP956940335, Tao, KP290284677 * Tap);
}
{
E Ta9, Tar, Tac, Tas;
{
E Ta7, Ta8, Taa, Tab;
Ta7 = T8D - T8O;
Ta8 = T9n - T9o;
Ta9 = Ta7 - Ta8;
Tar = Ta7 + Ta8;
Taa = T9i - T9l;
Tab = T9b - T90;
Tac = Taa - Tab;
Tas = Taa + Tab;
}
Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9);
Tax = FMA(KP290284677, Tar, KP956940335 * Tas);
Tah = FMA(KP881921264, Ta9, KP471396736 * Tac);
Tat = FNMS(KP290284677, Tas, KP956940335 * Tar);
}
{
E T9Z, Tae, Tid, Tig;
T9Z = T9R - T9Y;
Tae = Ta6 + Tad;
ci[WS(rs, 20)] = T9Z - Tae;
cr[WS(rs, 11)] = T9Z + Tae;
Tid = Tad - Ta6;
Tig = Tie + Tif;
cr[WS(rs, 59)] = Tid - Tig;
ci[WS(rs, 36)] = Tid + Tig;
}
{
E Tih, Tii, Taf, Tai;
Tih = Tah - Tag;
Tii = Tif - Tie;
cr[WS(rs, 43)] = Tih - Tii;
ci[WS(rs, 52)] = Tih + Tii;
Taf = T9R + T9Y;
Tai = Tag + Tah;
cr[WS(rs, 27)] = Taf - Tai;
ci[WS(rs, 4)] = Taf + Tai;
}
{
E Tan, Tau, Ti5, Tia;
Tan = Taj + Tam;
Tau = Taq + Tat;
ci[WS(rs, 28)] = Tan - Tau;
cr[WS(rs, 3)] = Tan + Tau;
Ti5 = Tax - Taw;
Tia = Ti6 + Ti9;
cr[WS(rs, 35)] = Ti5 - Tia;
ci[WS(rs, 60)] = Ti5 + Tia;
}
{
E Tib, Tic, Tav, Tay;
Tib = Tat - Taq;
Tic = Ti9 - Ti6;
cr[WS(rs, 51)] = Tib - Tic;
ci[WS(rs, 44)] = Tib + Tic;
Tav = Taj - Tam;
Tay = Taw + Tax;
cr[WS(rs, 19)] = Tav - Tay;
ci[WS(rs, 12)] = Tav + Tay;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 64 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 64, "hf_64", twinstr, &GENUS, { 808, 270, 230, 0 } };
void X(codelet_hf_64) (planner *p) {
X(khc2hc_register) (p, hf_64, &desc);
}
#endif