furnace/extern/fftw/dft/simd/common/t1bv_6.c
2022-05-31 03:24:29 -05:00

182 lines
6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:49 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include dft/simd/t1b.h -sign 1 */
/*
* This function contains 23 FP additions, 18 FP multiplications,
* (or, 17 additions, 12 multiplications, 6 fused multiply/add),
* 19 stack variables, 2 constants, and 12 memory accesses
*/
#include "dft/simd/t1b.h"
static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2;
T1 = LD(&(x[0]), ms, &(x[0]));
T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
T3 = BYTW(&(W[TWVL * 4]), T2);
T4 = VSUB(T1, T3);
Ti = VADD(T1, T3);
{
V Tb, Td, Ta, Tc;
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Tb = BYTW(&(W[TWVL * 6]), Ta);
Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Td = BYTW(&(W[0]), Tc);
Te = VSUB(Tb, Td);
Tk = VADD(Tb, Td);
}
{
V T6, T8, T5, T7;
T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T6 = BYTW(&(W[TWVL * 2]), T5);
T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
T8 = BYTW(&(W[TWVL * 8]), T7);
T9 = VSUB(T6, T8);
Tj = VADD(T6, T8);
}
{
V Th, Tf, Tg, Tn, Tl, Tm;
Th = VMUL(LDK(KP866025403), VSUB(T9, Te));
Tf = VADD(T9, Te);
Tg = VFNMS(LDK(KP500000000), Tf, T4);
ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
Tn = VMUL(LDK(KP866025403), VSUB(Tj, Tk));
Tl = VADD(Tj, Tk);
Tm = VFNMS(LDK(KP500000000), Tl, Ti);
ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
VTW(0, 5),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, { 17, 12, 6, 0 }, 0, 0, 0 };
void XSIMD(codelet_t1bv_6) (planner *p) {
X(kdft_dit_register) (p, t1bv_6, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1bv_6 -include dft/simd/t1b.h -sign 1 */
/*
* This function contains 23 FP additions, 14 FP multiplications,
* (or, 21 additions, 12 multiplications, 2 fused multiply/add),
* 19 stack variables, 2 constants, and 12 memory accesses
*/
#include "dft/simd/t1b.h"
static void t1bv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
R *x;
x = ii;
for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
V Tf, Ti, Ta, Tk, T5, Tj, Tc, Te, Td;
Tc = LD(&(x[0]), ms, &(x[0]));
Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Te = BYTW(&(W[TWVL * 4]), Td);
Tf = VSUB(Tc, Te);
Ti = VADD(Tc, Te);
{
V T7, T9, T6, T8;
T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T7 = BYTW(&(W[TWVL * 6]), T6);
T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
T9 = BYTW(&(W[0]), T8);
Ta = VSUB(T7, T9);
Tk = VADD(T7, T9);
}
{
V T2, T4, T1, T3;
T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
T2 = BYTW(&(W[TWVL * 2]), T1);
T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
T4 = BYTW(&(W[TWVL * 8]), T3);
T5 = VSUB(T2, T4);
Tj = VADD(T2, T4);
}
{
V Tb, Tg, Th, Tn, Tl, Tm;
Tb = VBYI(VMUL(LDK(KP866025403), VSUB(T5, Ta)));
Tg = VADD(T5, Ta);
Th = VFNMS(LDK(KP500000000), Tg, Tf);
ST(&(x[WS(rs, 1)]), VADD(Tb, Th), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VADD(Tf, Tg), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 5)]), VSUB(Th, Tb), ms, &(x[WS(rs, 1)]));
Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tj, Tk)));
Tl = VADD(Tj, Tk);
Tm = VFNMS(LDK(KP500000000), Tl, Ti);
ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VADD(Tn, Tm), ms, &(x[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
VTW(0, 5),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 6, XSIMD_STRING("t1bv_6"), twinstr, &GENUS, { 21, 12, 2, 0 }, 0, 0, 0 };
void XSIMD(codelet_t1bv_6) (planner *p) {
X(kdft_dit_register) (p, t1bv_6, &desc);
}
#endif