furnace/extern/fftw/tests/hook.c

260 lines
6.8 KiB
C

/* fftw hook to be used in the benchmark program.
We keep it in a separate file because
1) bench.c is supposed to test the API---we do not want to #include
"ifftw.h" and accidentally use internal symbols/macros.
2) this code is a royal mess. The messiness is due to
A) confusion between internal fftw tensors and bench_tensor's
(which we want to keep separate because the benchmark
program tests other routines too)
B) despite A), our desire to recycle the libbench verifier.
*/
#include <stdio.h>
#include "libbench2/bench-user.h"
#define CALLING_FFTW /* hack for Windows DLL nonsense */
#include "api/api.h"
#include "dft/dft.h"
#include "rdft/rdft.h"
extern int paranoid; /* in bench.c */
extern X(plan) the_plan; /* in bench.c */
/*
transform an fftw tensor into a bench_tensor.
*/
static bench_tensor *fftw_tensor_to_bench_tensor(tensor *t)
{
bench_tensor *bt = mktensor(t->rnk);
if (FINITE_RNK(t->rnk)) {
int i;
for (i = 0; i < t->rnk; ++i) {
/* FIXME: 64-bit unclean because of INT -> int conversion */
bt->dims[i].n = t->dims[i].n;
bt->dims[i].is = t->dims[i].is;
bt->dims[i].os = t->dims[i].os;
BENCH_ASSERT(bt->dims[i].n == t->dims[i].n);
BENCH_ASSERT(bt->dims[i].is == t->dims[i].is);
BENCH_ASSERT(bt->dims[i].os == t->dims[i].os);
}
}
return bt;
}
/*
transform an fftw problem into a bench_problem.
*/
static bench_problem *fftw_problem_to_bench_problem(planner *plnr,
const problem *p_)
{
bench_problem *bp = 0;
switch (p_->adt->problem_kind) {
case PROBLEM_DFT:
{
const problem_dft *p = (const problem_dft *) p_;
if (!p->ri || !p->ii)
abort();
bp = (bench_problem *) bench_malloc(sizeof(bench_problem));
bp->kind = PROBLEM_COMPLEX;
bp->sign = FFT_SIGN;
bp->split = 1; /* tensor strides are in R's, not C's */
bp->in = UNTAINT(p->ri);
bp->out = UNTAINT(p->ro);
bp->ini = UNTAINT(p->ii);
bp->outi = UNTAINT(p->io);
bp->inphys = bp->outphys = 0;
bp->iphyssz = bp->ophyssz = 0;
bp->in_place = p->ri == p->ro;
bp->sz = fftw_tensor_to_bench_tensor(p->sz);
bp->vecsz = fftw_tensor_to_bench_tensor(p->vecsz);
bp->k = 0;
break;
}
case PROBLEM_RDFT:
{
const problem_rdft *p = (const problem_rdft *) p_;
int i;
if (!p->I || !p->O)
abort();
for (i = 0; i < p->sz->rnk; ++i)
switch (p->kind[i]) {
case R2HC01:
case R2HC10:
case R2HC11:
case HC2R01:
case HC2R10:
case HC2R11:
return bp;
default:
;
}
bp = (bench_problem *) bench_malloc(sizeof(bench_problem));
bp->kind = PROBLEM_R2R;
bp->sign = FFT_SIGN;
bp->split = 0;
bp->in = UNTAINT(p->I);
bp->out = UNTAINT(p->O);
bp->ini = bp->outi = 0;
bp->inphys = bp->outphys = 0;
bp->iphyssz = bp->ophyssz = 0;
bp->in_place = p->I == p->O;
bp->sz = fftw_tensor_to_bench_tensor(p->sz);
bp->vecsz = fftw_tensor_to_bench_tensor(p->vecsz);
bp->k = (r2r_kind_t *) bench_malloc(sizeof(r2r_kind_t) * p->sz->rnk);
for (i = 0; i < p->sz->rnk; ++i)
switch (p->kind[i]) {
case R2HC: bp->k[i] = R2R_R2HC; break;
case HC2R: bp->k[i] = R2R_HC2R; break;
case DHT: bp->k[i] = R2R_DHT; break;
case REDFT00: bp->k[i] = R2R_REDFT00; break;
case REDFT01: bp->k[i] = R2R_REDFT01; break;
case REDFT10: bp->k[i] = R2R_REDFT10; break;
case REDFT11: bp->k[i] = R2R_REDFT11; break;
case RODFT00: bp->k[i] = R2R_RODFT00; break;
case RODFT01: bp->k[i] = R2R_RODFT01; break;
case RODFT10: bp->k[i] = R2R_RODFT10; break;
case RODFT11: bp->k[i] = R2R_RODFT11; break;
default: CK(0);
}
break;
}
case PROBLEM_RDFT2:
{
const problem_rdft2 *p = (const problem_rdft2 *) p_;
int rnk = p->sz->rnk;
if (!p->r0 || !p->r1 || !p->cr || !p->ci)
abort();
/* give up verifying rdft2 R2HCII */
if (p->kind != R2HC && p->kind != HC2R)
return bp;
if (rnk > 0) {
/* can't verify separate even/odd arrays for now */
if (2 * (p->r1 - p->r0) !=
((p->kind == R2HC) ?
p->sz->dims[rnk-1].is : p->sz->dims[rnk-1].os))
return bp;
}
bp = (bench_problem *) bench_malloc(sizeof(bench_problem));
bp->kind = PROBLEM_REAL;
bp->sign = p->kind == R2HC ? FFT_SIGN : -FFT_SIGN;
bp->split = 1; /* tensor strides are in R's, not C's */
if (p->kind == R2HC) {
bp->sign = FFT_SIGN;
bp->in = UNTAINT(p->r0);
bp->out = UNTAINT(p->cr);
bp->ini = 0;
bp->outi = UNTAINT(p->ci);
}
else {
bp->sign = -FFT_SIGN;
bp->out = UNTAINT(p->r0);
bp->in = UNTAINT(p->cr);
bp->outi = 0;
bp->ini = UNTAINT(p->ci);
}
bp->inphys = bp->outphys = 0;
bp->iphyssz = bp->ophyssz = 0;
bp->in_place = p->r0 == p->cr;
bp->sz = fftw_tensor_to_bench_tensor(p->sz);
if (rnk > 0) {
if (p->kind == R2HC)
bp->sz->dims[rnk-1].is /= 2;
else
bp->sz->dims[rnk-1].os /= 2;
}
bp->vecsz = fftw_tensor_to_bench_tensor(p->vecsz);
bp->k = 0;
break;
}
default:
abort();
}
bp->userinfo = 0;
bp->pstring = 0;
bp->destroy_input = !NO_DESTROY_INPUTP(plnr);
return bp;
}
static void hook(planner *plnr, plan *pln, const problem *p_, int optimalp)
{
int rounds = 5;
double tol = SINGLE_PRECISION ? 1.0e-3 : 1.0e-10;
UNUSED(optimalp);
if (verbose > 5) {
printer *pr = X(mkprinter_file)(stdout);
pr->print(pr, "%P:%(%p%)\n", p_, pln);
X(printer_destroy)(pr);
printf("cost %g \n\n", pln->pcost);
}
if (paranoid) {
bench_problem *bp;
bp = fftw_problem_to_bench_problem(plnr, p_);
if (bp) {
X(plan) the_plan_save = the_plan;
the_plan = (apiplan *) MALLOC(sizeof(apiplan), PLANS);
the_plan->pln = pln;
the_plan->prb = (problem *) p_;
X(plan_awake)(pln, AWAKE_SQRTN_TABLE);
verify_problem(bp, rounds, tol);
X(plan_awake)(pln, SLEEPY);
X(ifree)(the_plan);
the_plan = the_plan_save;
problem_destroy(bp);
}
}
}
static void paranoid_checks(void)
{
/* FIXME: assumes char = 8 bits, which is false on at least one
DSP I know of. */
#if 0
/* if flags_t is not 64 bits i want to know it. */
CK(sizeof(flags_t) == 8);
CK(sizeof(md5uint) >= 4);
#endif
CK(sizeof(uintptr_t) >= sizeof(R *));
CK(sizeof(INT) >= sizeof(R *));
}
void install_hook(void)
{
planner *plnr = X(the_planner)();
plnr->hook = hook;
paranoid_checks();
}
void uninstall_hook(void)
{
planner *plnr = X(the_planner)();
plnr->hook = 0;
}