furnace/extern/fftw/simd-support/simd-avx2-128.h

343 lines
9.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* 128-bit AVX2 support by Erik Lindahl, 2015.
* Erik Lindahl hereby places his modifications in the public domain.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "AVX2 only works in single or double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## s
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## d
#endif
#define SIMD_SUFFIX _avx2_128 /* for renaming */
#define VL DS(1,2) /* SIMD vector length, in term of complex numbers */
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#if defined(__GNUC__) && !defined(__AVX2__) /* sanity check */
#error "compiling simd-avx2-128.h without avx2 support"
#endif
#ifdef _MSC_VER
#ifndef inline
#define inline __inline
#endif
#endif
#include <immintrin.h>
typedef DS(__m128d,__m128) V;
#define VADD SUFF(_mm_add_p)
#define VSUB SUFF(_mm_sub_p)
#define VMUL SUFF(_mm_mul_p)
#define VXOR SUFF(_mm_xor_p)
#define SHUF SUFF(_mm_shuffle_p)
#define VPERM1 SUFF(_mm_permute_p)
#define UNPCKL SUFF(_mm_unpacklo_p)
#define UNPCKH SUFF(_mm_unpackhi_p)
#define SHUFVALS(fp0,fp1,fp2,fp3) \
(((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
#define VDUPL(x) DS(_mm_permute_pd(x,0), _mm_moveldup_ps(x))
#define VDUPH(x) DS(_mm_permute_pd(x,3), _mm_movehdup_ps(x))
#define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
#define LOADL(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
#define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
#define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
#define VLIT(x0, x1) DS(_mm_set_pd(x0, x1), _mm_set_ps(x0, x1, x0, x1))
#define DVK(var, val) V var = VLIT(val, val)
#define LDK(x) x
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ivs; /* UNUSED */
return *(const V *)x;
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
(void)ovs; /* UNUSED */
*(V *)x = v;
}
#ifdef FFTW_SINGLE
# ifdef _MSC_VER
/* Temporarily disable the warning "uninitialized local variable
'name' used" and runtime checks for using a variable before it is
defined which is erroneously triggered by the LOADL0 / LOADH macros
as they only modify VAL partly each. */
# ifndef __INTEL_COMPILER
# pragma warning(disable : 4700)
# pragma runtime_checks("u", off)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(disable : 592)
# endif
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
__m128 l0, l1;
(void)aligned_like; /* UNUSED */
#if defined(__ICC) || (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ > 8)
l0 = LOADL(x, SUFF(_mm_undefined_p)());
l1 = LOADL(x + ivs, SUFF(_mm_undefined_p)());
#else
l0 = LOADL(x, l0);
l1 = LOADL(x + ivs, l1);
#endif
return SUFF(_mm_movelh_p)(l0,l1);
}
# ifdef _MSC_VER
# ifndef __INTEL_COMPILER
# pragma warning(default : 4700)
# pragma runtime_checks("u", restore)
# endif
# endif
# ifdef __INTEL_COMPILER
# pragma warning(default : 592)
# endif
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon STOREL occurring
after STOREH */
STOREH(x + ovs, v);
STOREL(x, v);
}
#else /* ! FFTW_SINGLE */
# define LD LDA
# define ST STA
#endif
#define STM2 DS(STA,ST)
#define STN2(x, v0, v1, ovs) /* nop */
#ifdef FFTW_SINGLE
# define STM4(x, v, ovs, aligned_like) /* no-op */
/* STN4 is a macro, not a function, thanks to Visual C++ developers
deciding "it would be infrequent that people would want to pass more
than 3 [__m128 parameters] by value." 3 parameters ought to be enough
for anybody. */
# define STN4(x, v0, v1, v2, v3, ovs) \
{ \
V xxx0, xxx1, xxx2, xxx3; \
xxx0 = UNPCKL(v0, v2); \
xxx1 = UNPCKH(v0, v2); \
xxx2 = UNPCKL(v1, v3); \
xxx3 = UNPCKH(v1, v3); \
STA(x, UNPCKL(xxx0, xxx2), 0, 0); \
STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0); \
STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0); \
STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0); \
}
#else /* !FFTW_SINGLE */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
STOREL(x, v);
STOREH(x + ovs, v);
}
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif
static inline V FLIP_RI(V x)
{
return VPERM1(x, DS(1, SHUFVALS(1, 0, 3, 2)));
}
static inline V VCONJ(V x)
{
/* Produce a SIMD vector[VL] of (0 + -0i).
We really want to write this:
V pmpm = VLIT(-0.0, 0.0);
but historically some compilers have ignored the distiction
between +0 and -0. It looks like 'gcc-8 -fast-math' treats -0
as 0 too.
*/
union uvec {
unsigned u[4];
V v;
};
static const union uvec pmpm = {
#ifdef FFTW_SINGLE
{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
#else
{ 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
#endif
};
return VXOR(pmpm.v, x);
}
static inline V VBYI(V x)
{
x = VCONJ(x);
x = FLIP_RI(x);
return x;
}
/* FMA support */
#define VFMA(a, b, c) SUFF(_mm_fmadd_p)(a,b,c)
#define VFNMS(a, b, c) SUFF(_mm_fnmadd_p)(a,b,c)
#define VFMS(a, b, c) SUFF(_mm_fmsub_p)(a,b,c)
#define VFMAI(b, c) SUFF(_mm_addsub_p)(c,FLIP_RI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c) VADD(VCONJ(b),c)
#define VFMSCONJ(b,c) VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) SUFF(_mm_addsub_p)(c,b)
static inline V VZMUL(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, FLIP_RI(sr));
return SUFF(_mm_fmaddsub_p)(tr,sr,ti);
}
static inline V VZMULJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, FLIP_RI(sr));
return SUFF(_mm_fmsubadd_p)(tr,sr,ti);
}
static inline V VZMULI(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr = VDUPL(tx);
V ti = VDUPH(tx);
tr = VMUL(tr, FLIP_RI(sr));
return SUFF(_mm_fmaddsub_p)(ti,sr,tr);
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
# define VTW1(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
static inline V BYTW1(const R *t, V sr)
{
const V *twp = (const V *)t;
V tx = twp[0];
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
ti = VMUL(ti, FLIP_RI(sr));
return SUFF(_mm_fmaddsub_p)(tr,sr,ti);
}
static inline V BYTWJ1(const R *t, V sr)
{
const V *twp = (const V *)t;
V tx = twp[0];
V tr = UNPCKL(tx, tx);
V ti = UNPCKH(tx, tx);
ti = VMUL(ti, FLIP_RI(sr));
return SUFF(_mm_fmsubadd_p)(tr,sr,ti);
}
#else /* !FFTW_SINGLE */
# define VTW1(v,x) {TW_CEXP, v, x}
static inline V BYTW1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LD(t, 1, t);
return VZMULJ(tx, sr);
}
#endif
#define TWVL1 (VL)
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else /* !FFTW_SINGLE */
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#ifdef FFTW_SINGLE
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
# define TWVL3 (VL)
#else
# define VTW3(v,x) VTW1(v,x)
# define TWVL3 TWVL1
#endif
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)
#define VLEAVE() /* nothing */
#include "simd-common.h"