furnace/extern/fftw/simd-support/simd-altivec.h

298 lines
8.4 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef FFTW_SINGLE
#error "ALTIVEC only works in single precision"
#endif
/* define these unconditionally, because they are used by
taint.c which is compiled without altivec */
#define SIMD_SUFFIX _altivec /* for renaming */
#define VL 2 /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) ((x) == 2)
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OKA
#if !defined(__VEC__) && !defined(FAKE__VEC__)
# error "compiling simd-altivec.h requires -maltivec or equivalent"
#endif
#ifdef HAVE_ALTIVEC_H
# include <altivec.h>
#endif
typedef vector float V;
#define VLIT(x0, x1, x2, x3) {x0, x1, x2, x3}
#define LDK(x) x
#define DVK(var, val) const V var = VLIT(val, val, val, val)
static inline V VADD(V a, V b) { return vec_add(a, b); }
static inline V VSUB(V a, V b) { return vec_sub(a, b); }
static inline V VFMA(V a, V b, V c) { return vec_madd(a, b, c); }
static inline V VFNMS(V a, V b, V c) { return vec_nmsub(a, b, c); }
static inline V VMUL(V a, V b)
{
DVK(zero, -0.0);
return VFMA(a, b, zero);
}
static inline V VFMS(V a, V b, V c) { return VSUB(VMUL(a, b), c); }
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
UNUSED(ivs);
UNUSED(aligned_like);
return vec_ld(0, x);
}
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
/* common subexpressions */
const INT fivs = sizeof(R) * ivs;
/* you are not expected to understand this: */
const vector unsigned int perm = VLIT(0, 0, 0xFFFFFFFF, 0xFFFFFFFF);
vector unsigned char ml = vec_lvsr(fivs + 8, aligned_like);
vector unsigned char mh = vec_lvsl(0, aligned_like);
vector unsigned char msk =
(vector unsigned char)vec_sel((V)mh, (V)ml, perm);
/* end of common subexpressions */
return vec_perm(vec_ld(0, x), vec_ld(fivs, x), msk);
}
/* store lower half */
static inline void STH(R *x, V v, R *aligned_like)
{
v = vec_perm(v, v, vec_lvsr(0, aligned_like));
vec_ste(v, 0, x);
vec_ste(v, sizeof(R), x);
}
static inline void STL(R *x, V v, INT ovs, R *aligned_like)
{
const INT fovs = sizeof(R) * ovs;
v = vec_perm(v, v, vec_lvsr(fovs + 8, aligned_like));
vec_ste(v, fovs, x);
vec_ste(v, sizeof(R) + fovs, x);
}
static inline void STA(R *x, V v, INT ovs, R *aligned_like)
{
UNUSED(ovs);
UNUSED(aligned_like);
vec_st(v, 0, x);
}
static inline void ST(R *x, V v, INT ovs, R *aligned_like)
{
/* WARNING: the extra_iter hack depends upon STH occurring after
STL */
STL(x, v, ovs, aligned_like);
STH(x, v, aligned_like);
}
#define STM2(x, v, ovs, aligned_like) /* no-op */
static inline void STN2(R *x, V v0, V v1, INT ovs)
{
const INT fovs = sizeof(R) * ovs;
const vector unsigned int even =
VLIT(0x00010203, 0x04050607, 0x10111213, 0x14151617);
const vector unsigned int odd =
VLIT(0x08090a0b, 0x0c0d0e0f, 0x18191a1b, 0x1c1d1e1f);
vec_st(vec_perm(v0, v1, (vector unsigned char)even), 0, x);
vec_st(vec_perm(v0, v1, (vector unsigned char)odd), fovs, x);
}
#define STM4(x, v, ovs, aligned_like) /* no-op */
static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
{
const INT fovs = sizeof(R) * ovs;
V x0 = vec_mergeh(v0, v2);
V x1 = vec_mergel(v0, v2);
V x2 = vec_mergeh(v1, v3);
V x3 = vec_mergel(v1, v3);
V y0 = vec_mergeh(x0, x2);
V y1 = vec_mergel(x0, x2);
V y2 = vec_mergeh(x1, x3);
V y3 = vec_mergel(x1, x3);
vec_st(y0, 0, x);
vec_st(y1, fovs, x);
vec_st(y2, 2 * fovs, x);
vec_st(y3, 3 * fovs, x);
}
static inline V FLIP_RI(V x)
{
const vector unsigned int perm =
VLIT(0x04050607, 0x00010203, 0x0c0d0e0f, 0x08090a0b);
return vec_perm(x, x, (vector unsigned char)perm);
}
static inline V VCONJ(V x)
{
const V pmpm = VLIT(0.0, -0.0, 0.0, -0.0);
return vec_xor(x, pmpm);
}
static inline V VBYI(V x)
{
return FLIP_RI(VCONJ(x));
}
static inline V VFMAI(V b, V c)
{
const V mpmp = VLIT(-1.0, 1.0, -1.0, 1.0);
return VFMA(FLIP_RI(b), mpmp, c);
}
static inline V VFNMSI(V b, V c)
{
const V mpmp = VLIT(-1.0, 1.0, -1.0, 1.0);
return VFNMS(FLIP_RI(b), mpmp, c);
}
static inline V VFMACONJ(V b, V c)
{
const V pmpm = VLIT(1.0, -1.0, 1.0, -1.0);
return VFMA(b, pmpm, c);
}
static inline V VFNMSCONJ(V b, V c)
{
const V pmpm = VLIT(1.0, -1.0, 1.0, -1.0);
return VFNMS(b, pmpm, c);
}
static inline V VFMSCONJ(V b, V c)
{
return VSUB(VCONJ(b), c);
}
static inline V VZMUL(V tx, V sr)
{
const vector unsigned int real =
VLIT(0x00010203, 0x00010203, 0x08090a0b, 0x08090a0b);
const vector unsigned int imag =
VLIT(0x04050607, 0x04050607, 0x0c0d0e0f, 0x0c0d0e0f);
V si = VBYI(sr);
V tr = vec_perm(tx, tx, (vector unsigned char)real);
V ti = vec_perm(tx, tx, (vector unsigned char)imag);
return VFMA(ti, si, VMUL(tr, sr));
}
static inline V VZMULJ(V tx, V sr)
{
const vector unsigned int real =
VLIT(0x00010203, 0x00010203, 0x08090a0b, 0x08090a0b);
const vector unsigned int imag =
VLIT(0x04050607, 0x04050607, 0x0c0d0e0f, 0x0c0d0e0f);
V si = VBYI(sr);
V tr = vec_perm(tx, tx, (vector unsigned char)real);
V ti = vec_perm(tx, tx, (vector unsigned char)imag);
return VFNMS(ti, si, VMUL(tr, sr));
}
static inline V VZMULI(V tx, V si)
{
const vector unsigned int real =
VLIT(0x00010203, 0x00010203, 0x08090a0b, 0x08090a0b);
const vector unsigned int imag =
VLIT(0x04050607, 0x04050607, 0x0c0d0e0f, 0x0c0d0e0f);
V sr = VBYI(si);
V tr = vec_perm(tx, tx, (vector unsigned char)real);
V ti = vec_perm(tx, tx, (vector unsigned char)imag);
return VFNMS(ti, si, VMUL(tr, sr));
}
static inline V VZMULIJ(V tx, V si)
{
const vector unsigned int real =
VLIT(0x00010203, 0x00010203, 0x08090a0b, 0x08090a0b);
const vector unsigned int imag =
VLIT(0x04050607, 0x04050607, 0x0c0d0e0f, 0x0c0d0e0f);
V sr = VBYI(si);
V tr = vec_perm(tx, tx, (vector unsigned char)real);
V ti = vec_perm(tx, tx, (vector unsigned char)imag);
return VFMA(ti, si, VMUL(tr, sr));
}
/* twiddle storage #1: compact, slower */
#define VTW1(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#define TWVL1 (VL)
static inline V BYTW1(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = VBYI(sr);
V tx = twp[0];
V tr = vec_mergeh(tx, tx);
V ti = vec_mergel(tx, tx);
return VFMA(ti, si, VMUL(tr, sr));
}
static inline V BYTWJ1(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = VBYI(sr);
V tx = twp[0];
V tr = vec_mergeh(tx, tx);
V ti = vec_mergel(tx, tx);
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #2: twice the space, faster (when in cache) */
#define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFMA(ti, si, VMUL(tr, sr));
}
static inline V BYTWJ2(const R *t, V sr)
{
const V *twp = (const V *)t;
V si = FLIP_RI(sr);
V tr = twp[0], ti = twp[1];
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#define TWVL3 (VL)
/* twiddle storage for split arrays */
#define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#define TWVLS (2 * VL)
#define VLEAVE() /* nothing */
#include "simd-common.h"