furnace/extern/fftw/rdft/vrank-geq1-rdft2.c

217 lines
6.0 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Plans for handling vector transform loops. These are *just* the
loops, and rely on child plans for the actual RDFT2s.
They form a wrapper around solvers that don't have apply functions
for non-null vectors.
vrank-geq1-rdft2 plans also recursively handle the case of
multi-dimensional vectors, obviating the need for most solvers to
deal with this. We can also play games here, such as reordering
the vector loops.
Each vrank-geq1-rdft2 plan reduces the vector rank by 1, picking out a
dimension determined by the vecloop_dim field of the solver. */
#include "rdft/rdft.h"
typedef struct {
solver super;
int vecloop_dim;
const int *buddies;
size_t nbuddies;
} S;
typedef struct {
plan_rdft2 super;
plan *cld;
INT vl;
INT rvs, cvs;
const S *solver;
} P;
static void apply(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
INT i, vl = ego->vl;
INT rvs = ego->rvs, cvs = ego->cvs;
rdft2apply cldapply = ((plan_rdft2 *) ego->cld)->apply;
for (i = 0; i < vl; ++i) {
cldapply(ego->cld, r0 + i * rvs, r1 + i * rvs,
cr + i * cvs, ci + i * cvs);
}
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *s = ego->solver;
p->print(p, "(rdft2-vrank>=1-x%D/%d%(%p%))",
ego->vl, s->vecloop_dim, ego->cld);
}
static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp)
{
return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies,
vecsz, oop, dp);
}
static int applicable0(const solver *ego_, const problem *p_, int *dp)
{
const S *ego = (const S *) ego_;
const problem_rdft2 *p = (const problem_rdft2 *) p_;
if (FINITE_RNK(p->vecsz->rnk)
&& p->vecsz->rnk > 0
&& pickdim(ego, p->vecsz, p->r0 != p->cr, dp)) {
if (p->r0 != p->cr)
return 1; /* can always operate out-of-place */
return(X(rdft2_inplace_strides)(p, *dp));
}
return 0;
}
static int applicable(const solver *ego_, const problem *p_,
const planner *plnr, int *dp)
{
const S *ego = (const S *)ego_;
if (!applicable0(ego_, p_, dp)) return 0;
/* fftw2 behavior */
if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0]))
return 0;
if (NO_UGLYP(plnr)) {
const problem_rdft2 *p = (const problem_rdft2 *) p_;
iodim *d = p->vecsz->dims + *dp;
/* Heuristic: if the transform is multi-dimensional, and the
vector stride is less than the transform size, then we
probably want to use a rank>=2 plan first in order to combine
this vector with the transform-dimension vectors. */
if (p->sz->rnk > 1
&& X(imin)(X(iabs)(d->is), X(iabs)(d->os))
< X(rdft2_tensor_max_index)(p->sz, p->kind)
)
return 0;
/* Heuristic: don't use a vrank-geq1 for rank-0 vrank-1
transforms, since this case is better handled by rank-0
solvers. */
if (p->sz->rnk == 0 && p->vecsz->rnk == 1) return 0;
if (NO_NONTHREADEDP(plnr))
return 0; /* prefer threaded version */
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft2 *p;
P *pln;
plan *cld;
int vdim;
iodim *d;
INT rvs, cvs;
static const plan_adt padt = {
X(rdft2_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr, &vdim))
return (plan *) 0;
p = (const problem_rdft2 *) p_;
d = p->vecsz->dims + vdim;
A(d->n > 1); /* or else, p->ri + d->is etc. are invalid */
X(rdft2_strides)(p->kind, d, &rvs, &cvs);
cld = X(mkplan_d)(plnr,
X(mkproblem_rdft2_d)(
X(tensor_copy)(p->sz),
X(tensor_copy_except)(p->vecsz, vdim),
TAINT(p->r0, rvs), TAINT(p->r1, rvs),
TAINT(p->cr, cvs), TAINT(p->ci, cvs),
p->kind));
if (!cld) return (plan *) 0;
pln = MKPLAN_RDFT2(P, &padt, apply);
pln->cld = cld;
pln->vl = d->n;
pln->rvs = rvs;
pln->cvs = cvs;
pln->solver = ego;
X(ops_zero)(&pln->super.super.ops);
pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
if (p->sz->rnk != 1 || (p->sz->dims[0].n > 128))
pln->super.super.pcost = pln->vl * cld->pcost;
return &(pln->super.super);
}
static solver *mksolver(int vecloop_dim, const int *buddies, size_t nbuddies)
{
static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->vecloop_dim = vecloop_dim;
slv->buddies = buddies;
slv->nbuddies = nbuddies;
return &(slv->super);
}
void X(rdft2_vrank_geq1_register)(planner *p)
{
/* FIXME: Should we try other vecloop_dim values? */
static const int buddies[] = { 1, -1 };
size_t i;
for (i = 0; i < NELEM(buddies); ++i)
REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
}