furnace/extern/fftw/rdft/simd/common/hc2cbdftv_8.c

229 lines
8.3 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
/*
* This function contains 41 FP additions, 32 FP multiplications,
* (or, 23 additions, 14 multiplications, 18 fused multiply/add),
* 51 stack variables, 1 constants, and 16 memory accesses
*/
#include "rdft/simd/hc2cbv.h"
static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
V Tm, Tp, TF, TE, Th, Tv, Tc, Tu, T4, Tk, Tf, Tl, T7, Tn, Ta;
V To, T2, T3, Td, Te, T5, T6, T8, T9, Tg, Tb, TL, TK, TJ, TM;
V TN, TC, TG, TB, TD, TH, TI, Ti, Tq, T1, Tj, Tr, Ts, Tw, Ty;
V Tt, Tx, Tz, TA;
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
T4 = VFNMSCONJ(T3, T2);
Tk = VFMACONJ(T3, T2);
Td = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Te = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Tf = VFNMSCONJ(Te, Td);
Tl = VFMACONJ(Te, Td);
T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T7 = VFNMSCONJ(T6, T5);
Tn = VFMACONJ(T6, T5);
T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
T9 = LD(&(Rm[0]), -ms, &(Rm[0]));
Ta = VFMSCONJ(T9, T8);
To = VFMACONJ(T9, T8);
Tm = VSUB(Tk, Tl);
Tp = VSUB(Tn, To);
TF = VADD(Tn, To);
TE = VADD(Tk, Tl);
Tg = VSUB(T7, Ta);
Th = VFMA(LDK(KP707106781), Tg, Tf);
Tv = VFNMS(LDK(KP707106781), Tg, Tf);
Tb = VADD(T7, Ta);
Tc = VFMA(LDK(KP707106781), Tb, T4);
Tu = VFNMS(LDK(KP707106781), Tb, T4);
TL = VADD(TE, TF);
TJ = LDW(&(W[0]));
TK = VZMULI(TJ, VFMAI(Th, Tc));
TM = VADD(TK, TL);
ST(&(Rp[0]), TM, ms, &(Rp[0]));
TN = VCONJ(VSUB(TL, TK));
ST(&(Rm[0]), TN, -ms, &(Rm[0]));
TB = LDW(&(W[TWVL * 8]));
TC = VZMULI(TB, VFMAI(Tv, Tu));
TD = LDW(&(W[TWVL * 6]));
TG = VZMUL(TD, VSUB(TE, TF));
TH = VADD(TC, TG);
ST(&(Rp[WS(rs, 2)]), TH, ms, &(Rp[0]));
TI = VCONJ(VSUB(TG, TC));
ST(&(Rm[WS(rs, 2)]), TI, -ms, &(Rm[0]));
T1 = LDW(&(W[TWVL * 12]));
Ti = VZMULI(T1, VFNMSI(Th, Tc));
Tj = LDW(&(W[TWVL * 10]));
Tq = VZMUL(Tj, VFNMSI(Tp, Tm));
Tr = VADD(Ti, Tq);
ST(&(Rp[WS(rs, 3)]), Tr, ms, &(Rp[WS(rs, 1)]));
Ts = VCONJ(VSUB(Tq, Ti));
ST(&(Rm[WS(rs, 3)]), Ts, -ms, &(Rm[WS(rs, 1)]));
Tt = LDW(&(W[TWVL * 4]));
Tw = VZMULI(Tt, VFNMSI(Tv, Tu));
Tx = LDW(&(W[TWVL * 2]));
Ty = VZMUL(Tx, VFMAI(Tp, Tm));
Tz = VADD(Tw, Ty);
ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
TA = VCONJ(VSUB(Ty, Tw));
ST(&(Rm[WS(rs, 1)]), TA, -ms, &(Rm[WS(rs, 1)]));
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, { 23, 14, 18, 0 } };
void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 8 -dif -sign 1 -name hc2cbdftv_8 -include rdft/simd/hc2cbv.h */
/*
* This function contains 41 FP additions, 16 FP multiplications,
* (or, 41 additions, 16 multiplications, 0 fused multiply/add),
* 55 stack variables, 1 constants, and 16 memory accesses
*/
#include "rdft/simd/hc2cbv.h"
static void hc2cbdftv_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 14)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(32, rs)) {
V T5, Tj, Tq, TI, Te, Tk, Tt, TJ, T2, Tg, T4, Ti, T3, Th, To;
V Tp, T6, Tc, T8, Tb, T7, Ta, T9, Td, Tr, Ts, TP, Tu, Tm, TO;
V Tn, Tf, Tl, T1, TN, Tv, TR, Tw, TQ, TC, TK, TA, TG, TB, TH;
V Ty, Tz, Tx, TF, TD, TM, TE, TL;
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
T3 = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
T4 = VCONJ(T3);
Th = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Ti = VCONJ(Th);
T5 = VSUB(T2, T4);
Tj = VSUB(Tg, Ti);
To = VADD(T2, T4);
Tp = VADD(Tg, Ti);
Tq = VSUB(To, Tp);
TI = VADD(To, Tp);
T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T8 = VCONJ(T7);
Ta = LD(&(Rm[0]), -ms, &(Rm[0]));
Tb = VCONJ(Ta);
T9 = VSUB(T6, T8);
Td = VSUB(Tb, Tc);
Te = VMUL(LDK(KP707106781), VADD(T9, Td));
Tk = VMUL(LDK(KP707106781), VSUB(T9, Td));
Tr = VADD(T6, T8);
Ts = VADD(Tb, Tc);
Tt = VBYI(VSUB(Tr, Ts));
TJ = VADD(Tr, Ts);
TP = VADD(TI, TJ);
Tn = LDW(&(W[TWVL * 10]));
Tu = VZMUL(Tn, VSUB(Tq, Tt));
Tf = VADD(T5, Te);
Tl = VBYI(VADD(Tj, Tk));
T1 = LDW(&(W[TWVL * 12]));
Tm = VZMULI(T1, VSUB(Tf, Tl));
TN = LDW(&(W[0]));
TO = VZMULI(TN, VADD(Tl, Tf));
Tv = VADD(Tm, Tu);
ST(&(Rp[WS(rs, 3)]), Tv, ms, &(Rp[WS(rs, 1)]));
TR = VCONJ(VSUB(TP, TO));
ST(&(Rm[0]), TR, -ms, &(Rm[0]));
Tw = VCONJ(VSUB(Tu, Tm));
ST(&(Rm[WS(rs, 3)]), Tw, -ms, &(Rm[WS(rs, 1)]));
TQ = VADD(TO, TP);
ST(&(Rp[0]), TQ, ms, &(Rp[0]));
TB = LDW(&(W[TWVL * 2]));
TC = VZMUL(TB, VADD(Tq, Tt));
TH = LDW(&(W[TWVL * 6]));
TK = VZMUL(TH, VSUB(TI, TJ));
Ty = VBYI(VSUB(Tk, Tj));
Tz = VSUB(T5, Te);
Tx = LDW(&(W[TWVL * 4]));
TA = VZMULI(Tx, VADD(Ty, Tz));
TF = LDW(&(W[TWVL * 8]));
TG = VZMULI(TF, VSUB(Tz, Ty));
TD = VADD(TA, TC);
ST(&(Rp[WS(rs, 1)]), TD, ms, &(Rp[WS(rs, 1)]));
TM = VCONJ(VSUB(TK, TG));
ST(&(Rm[WS(rs, 2)]), TM, -ms, &(Rm[0]));
TE = VCONJ(VSUB(TC, TA));
ST(&(Rm[WS(rs, 1)]), TE, -ms, &(Rm[WS(rs, 1)]));
TL = VADD(TG, TK);
ST(&(Rp[WS(rs, 2)]), TL, ms, &(Rp[0]));
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 8, XSIMD_STRING("hc2cbdftv_8"), twinstr, &GENUS, { 41, 16, 0, 0 } };
void XSIMD(codelet_hc2cbdftv_8) (planner *p) {
X(khc2c_register) (p, hc2cbdftv_8, &desc, HC2C_VIA_DFT);
}
#endif