furnace/extern/fftw/rdft/rdft2-rdft.c

329 lines
8.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "rdft/rdft.h"
typedef struct {
solver super;
} S;
typedef struct {
plan_rdft2 super;
plan *cld, *cldrest;
INT n, vl, nbuf, bufdist;
INT cs, ivs, ovs;
} P;
/***************************************************************************/
/* FIXME: have alternate copy functions that push a vector loop inside
the n loops? */
/* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */
static void hc2c(INT n, R *r, R *rio, R *iio, INT os)
{
INT i;
rio[0] = r[0];
iio[0] = 0;
for (i = 1; i + i < n; ++i) {
rio[i * os] = r[i];
iio[i * os] = r[n - i];
}
if (i + i == n) { /* store the Nyquist frequency */
rio[i * os] = r[i];
iio[i * os] = K(0.0);
}
}
/* reverse of hc2c */
static void c2hc(INT n, R *rio, R *iio, INT is, R *r)
{
INT i;
r[0] = rio[0];
for (i = 1; i + i < n; ++i) {
r[i] = rio[i * is];
r[n - i] = iio[i * is];
}
if (i + i == n) /* store the Nyquist frequency */
r[i] = rio[i * is];
}
/***************************************************************************/
static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_rdft *cld = (plan_rdft *) ego->cld;
INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
INT n = ego->n;
INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs;
R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
plan_rdft2 *cldrest;
for (i = nbuf; i <= vl; i += nbuf) {
/* transform to bufs: */
cld->apply((plan *) cld, r0, bufs);
r0 += ivs * nbuf; r1 += ivs * nbuf;
/* copy back */
for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs)
hc2c(n, bufs + j*bufdist, cr, ci, os);
}
X(ifree)(bufs);
/* Do the remaining transforms, if any: */
cldrest = (plan_rdft2 *) ego->cldrest;
cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}
static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
const P *ego = (const P *) ego_;
plan_rdft *cld = (plan_rdft *) ego->cld;
INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist;
INT n = ego->n;
INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs;
R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
plan_rdft2 *cldrest;
for (i = nbuf; i <= vl; i += nbuf) {
/* copy to bufs */
for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs)
c2hc(n, cr, ci, is, bufs + j*bufdist);
/* transform back: */
cld->apply((plan *) cld, bufs, r0);
r0 += ovs * nbuf; r1 += ovs * nbuf;
}
X(ifree)(bufs);
/* Do the remaining transforms, if any: */
cldrest = (plan_rdft2 *) ego->cldrest;
cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldrest, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldrest);
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))",
ego->super.apply == apply_r2hc ? "r2hc" : "hc2r",
ego->n, ego->nbuf,
ego->vl, ego->bufdist % ego->n,
ego->cld, ego->cldrest);
}
static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl)
{
INT is, os, ivs, ovs;
if (p->r0 != p->cr)
return 1;
if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
return 1;
A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */
X(rdft2_strides)(p->kind, p->sz->dims, &is, &os);
X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs);
/* handle one potentially common case: "contiguous" real and
complex arrays, which overlap because of the differing sizes. */
if (n * X(iabs)(is) <= X(iabs)(ivs)
&& (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs)
&& ( ((p->cr - p->ci) <= X(iabs)(os)) ||
((p->ci - p->cr) <= X(iabs)(os)) )
&& ivs > 0 && ovs > 0) {
INT vsmin = X(imin)(ivs, ovs);
INT vsmax = X(imax)(ivs, ovs);
return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin);
}
return vl; /* punt: just buffer the whole vector */
}
static int applicable0(const problem *p_, const S *ego, const planner *plnr)
{
const problem_rdft2 *p = (const problem_rdft2 *) p_;
UNUSED(ego);
return(1
&& p->vecsz->rnk <= 1
&& p->sz->rnk == 1
/* FIXME: does it make sense to do R2HCII ? */
&& (p->kind == R2HC || p->kind == HC2R)
/* real strides must allow for reduction to rdft */
&& (2 * (p->r1 - p->r0) ==
(((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os)))
&& !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr))
);
}
static int applicable(const problem *p_, const S *ego, const planner *plnr)
{
const problem_rdft2 *p;
if (NO_BUFFERINGP(plnr)) return 0;
if (!applicable0(p_, ego, plnr)) return 0;
p = (const problem_rdft2 *) p_;
if (NO_UGLYP(plnr)) {
if (p->r0 != p->cr) return 0;
if (X(toobig)(p->sz->dims[0].n)) return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
P *pln;
plan *cld = (plan *) 0;
plan *cldrest = (plan *) 0;
const problem_rdft2 *p = (const problem_rdft2 *) p_;
R *bufs = (R *) 0;
INT nbuf = 0, bufdist, n, vl;
INT ivs, ovs, rs, id, od;
static const plan_adt padt = {
X(rdft2_solve), awake, print, destroy
};
if (!applicable(p_, ego, plnr))
goto nada;
n = p->sz->dims[0].n;
X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl));
bufdist = X(bufdist)(n, vl);
A(nbuf > 0);
/* initial allocation for the purpose of planning */
bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
id = ivs * (nbuf * (vl / nbuf));
od = ovs * (nbuf * (vl / nbuf));
if (p->kind == R2HC) {
cld = X(mkplan_f_d)(
plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(n, p->sz->dims[0].is/2, 1),
X(mktensor_1d)(nbuf, ivs, bufdist),
TAINT(p->r0, ivs * nbuf), bufs, &p->kind),
0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
if (!cld) goto nada;
X(ifree)(bufs); bufs = 0;
cldrest = X(mkplan_d)(plnr,
X(mkproblem_rdft2_d)(
X(tensor_copy)(p->sz),
X(mktensor_1d)(vl % nbuf, ivs, ovs),
p->r0 + id, p->r1 + id,
p->cr + od, p->ci + od,
p->kind));
if (!cldrest) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
} else {
A(p->kind == HC2R);
cld = X(mkplan_f_d)(
plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(n, 1, p->sz->dims[0].os/2),
X(mktensor_1d)(nbuf, bufdist, ovs),
bufs, TAINT(p->r0, ovs * nbuf), &p->kind),
0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */
if (!cld) goto nada;
X(ifree)(bufs); bufs = 0;
cldrest = X(mkplan_d)(plnr,
X(mkproblem_rdft2_d)(
X(tensor_copy)(p->sz),
X(mktensor_1d)(vl % nbuf, ivs, ovs),
p->r0 + od, p->r1 + od,
p->cr + id, p->ci + id,
p->kind));
if (!cldrest) goto nada;
pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
}
pln->cld = cld;
pln->cldrest = cldrest;
pln->n = n;
pln->vl = vl;
pln->ivs = ivs;
pln->ovs = ovs;
X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs);
pln->nbuf = nbuf;
pln->bufdist = bufdist;
X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops,
&pln->super.super.ops);
pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl;
return &(pln->super.super);
nada:
X(ifree0)(bufs);
X(plan_destroy_internal)(cldrest);
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
static solver *mksolver(void)
{
static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
return &(slv->super);
}
void X(rdft2_rdft_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}