furnace/extern/fftw/rdft/rank0.c

382 lines
10 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* plans for rank-0 RDFTs (copy operations) */
#include "rdft/rdft.h"
#ifdef HAVE_STRING_H
#include <string.h> /* for memcpy() */
#endif
#define MAXRNK 32 /* FIXME: should malloc() */
typedef struct {
plan_rdft super;
INT vl;
int rnk;
iodim d[MAXRNK];
const char *nam;
} P;
typedef struct {
solver super;
rdftapply apply;
int (*applicable)(const P *pln, const problem_rdft *p);
const char *nam;
} S;
/* copy up to MAXRNK dimensions from problem into plan. If a
contiguous dimension exists, save its length in pln->vl */
static int fill_iodim(P *pln, const problem_rdft *p)
{
int i;
const tensor *vecsz = p->vecsz;
pln->vl = 1;
pln->rnk = 0;
for (i = 0; i < vecsz->rnk; ++i) {
/* extract contiguous dimensions */
if (pln->vl == 1 &&
vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
pln->vl = vecsz->dims[i].n;
else if (pln->rnk == MAXRNK)
return 0;
else
pln->d[pln->rnk++] = vecsz->dims[i];
}
return 1;
}
/* generic higher-rank copy routine, calls cpy2d() to do the real work */
static void copy(const iodim *d, int rnk, INT vl,
R *I, R *O,
cpy2d_func cpy2d)
{
A(rnk >= 2);
if (rnk == 2)
cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
else {
INT i;
for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
copy(d + 1, rnk - 1, vl, I, O, cpy2d);
}
}
/* FIXME: should be more general */
static int transposep(const P *pln)
{
int i;
for (i = 0; i < pln->rnk - 2; ++i)
if (pln->d[i].is != pln->d[i].os)
return 0;
return (pln->d[i].n == pln->d[i+1].n &&
pln->d[i].is == pln->d[i+1].os &&
pln->d[i].os == pln->d[i+1].is);
}
/* generic higher-rank transpose routine, calls transpose2d() to do
* the real work */
static void transpose(const iodim *d, int rnk, INT vl,
R *I,
transpose_func transpose2d)
{
A(rnk >= 2);
if (rnk == 2)
transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
else {
INT i;
for (i = 0; i < d[0].n; ++i, I += d[0].is)
transpose(d + 1, rnk - 1, vl, I, transpose2d);
}
}
/**************************************************************/
/* rank 0,1,2, out of place, iterative */
static void apply_iter(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
switch (ego->rnk) {
case 0:
X(cpy1d)(I, O, ego->vl, 1, 1, 1);
break;
case 1:
X(cpy1d)(I, O,
ego->d[0].n, ego->d[0].is, ego->d[0].os,
ego->vl);
break;
default:
copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
break;
}
}
static int applicable_iter(const P *pln, const problem_rdft *p)
{
UNUSED(pln);
return (p->I != p->O);
}
/**************************************************************/
/* out of place, write contiguous output */
static void apply_cpy2dco(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
}
static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
{
int rnk = pln->rnk;
return (1
&& p->I != p->O
&& rnk >= 2
/* must not duplicate apply_iter */
&& (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
||
X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
);
}
/**************************************************************/
/* out of place, tiled, no buffering */
static void apply_tiled(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
}
static int applicable_tiled(const P *pln, const problem_rdft *p)
{
return (1
&& p->I != p->O
&& pln->rnk >= 2
/* somewhat arbitrary */
&& X(compute_tilesz)(pln->vl, 1) > 4
);
}
/**************************************************************/
/* out of place, tiled, with buffer */
static void apply_tiledbuf(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
}
#define applicable_tiledbuf applicable_tiled
/**************************************************************/
/* rank 0, out of place, using memcpy */
static void apply_memcpy(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
A(ego->rnk == 0);
memcpy(O, I, ego->vl * sizeof(R));
}
static int applicable_memcpy(const P *pln, const problem_rdft *p)
{
return (1
&& p->I != p->O
&& pln->rnk == 0
&& pln->vl > 2 /* do not bother memcpy-ing complex numbers */
);
}
/**************************************************************/
/* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
transposes of vl-tuples ... for large vl it should be more
efficient to use memcpy than the tiled stuff). */
static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
{
INT i, n = d->n, is = d->is, os = d->os;
if (rnk == 1)
for (i = 0; i < n; ++i, I += is, O += os)
memcpy(O, I, cpysz);
else {
--rnk; ++d;
for (i = 0; i < n; ++i, I += is, O += os)
memcpy_loop(cpysz, rnk, d, I, O);
}
}
static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
}
static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
{
return (p->I != p->O
&& pln->rnk > 0
&& pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
}
/**************************************************************/
/* rank 2, in place, square transpose, iterative */
static void apply_ip_sq(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
UNUSED(O);
transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
}
static int applicable_ip_sq(const P *pln, const problem_rdft *p)
{
return (1
&& p->I == p->O
&& pln->rnk >= 2
&& transposep(pln));
}
/**************************************************************/
/* rank 2, in place, square transpose, tiled */
static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
UNUSED(O);
transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
}
static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
{
return (1
&& applicable_ip_sq(pln, p)
/* somewhat arbitrary */
&& X(compute_tilesz)(pln->vl, 2) > 4
);
}
/**************************************************************/
/* rank 2, in place, square transpose, tiled, buffered */
static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
UNUSED(O);
transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
}
#define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
/**************************************************************/
static int applicable(const S *ego, const problem *p_)
{
const problem_rdft *p = (const problem_rdft *) p_;
P pln;
return (1
&& p->sz->rnk == 0
&& FINITE_RNK(p->vecsz->rnk)
&& fill_iodim(&pln, p)
&& ego->applicable(&pln, p)
);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
int i;
p->print(p, "(%s/%D", ego->nam, ego->vl);
for (i = 0; i < ego->rnk; ++i)
p->print(p, "%v", ego->d[i].n);
p->print(p, ")");
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const problem_rdft *p;
const S *ego = (const S *) ego_;
P *pln;
int retval;
static const plan_adt padt = {
X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
};
UNUSED(plnr);
if (!applicable(ego, p_))
return (plan *) 0;
p = (const problem_rdft *) p_;
pln = MKPLAN_RDFT(P, &padt, ego->apply);
retval = fill_iodim(pln, p);
(void)retval; /* UNUSED unless DEBUG */
A(retval);
A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
pln->nam = ego->nam;
/* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
return &(pln->super.super);
}
void X(rdft_rank0_register)(planner *p)
{
unsigned i;
static struct {
rdftapply apply;
int (*applicable)(const P *, const problem_rdft *);
const char *nam;
} tab[] = {
{ apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
{ apply_memcpy_loop, applicable_memcpy_loop,
"rdft-rank0-memcpy-loop" },
{ apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
{ apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
{ apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
{ apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
{ apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
{
apply_ip_sq_tiled,
applicable_ip_sq_tiled,
"rdft-rank0-ip-sq-tiled"
},
{
apply_ip_sq_tiledbuf,
applicable_ip_sq_tiledbuf,
"rdft-rank0-ip-sq-tiledbuf"
},
};
for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->apply = tab[i].apply;
slv->applicable = tab[i].applicable;
slv->nam = tab[i].nam;
REGISTER_SOLVER(p, &(slv->super));
}
}