furnace/extern/fftw/rdft/problem.c

239 lines
6.6 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "rdft/rdft.h"
#include <stddef.h>
static void destroy(problem *ego_)
{
problem_rdft *ego = (problem_rdft *) ego_;
#if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR)
X(ifree0)(ego->kind);
#endif
X(tensor_destroy2)(ego->vecsz, ego->sz);
X(ifree)(ego_);
}
static void kind_hash(md5 *m, const rdft_kind *kind, int rnk)
{
int i;
for (i = 0; i < rnk; ++i)
X(md5int)(m, kind[i]);
}
static void hash(const problem *p_, md5 *m)
{
const problem_rdft *p = (const problem_rdft *) p_;
X(md5puts)(m, "rdft");
X(md5int)(m, p->I == p->O);
kind_hash(m, p->kind, p->sz->rnk);
X(md5int)(m, X(ialignment_of)(p->I));
X(md5int)(m, X(ialignment_of)(p->O));
X(tensor_md5)(m, p->sz);
X(tensor_md5)(m, p->vecsz);
}
static void recur(const iodim *dims, int rnk, R *I)
{
if (rnk == RNK_MINFTY)
return;
else if (rnk == 0)
I[0] = K(0.0);
else if (rnk > 0) {
INT i, n = dims[0].n, is = dims[0].is;
if (rnk == 1) {
/* this case is redundant but faster */
for (i = 0; i < n; ++i)
I[i * is] = K(0.0);
} else {
for (i = 0; i < n; ++i)
recur(dims + 1, rnk - 1, I + i * is);
}
}
}
void X(rdft_zerotens)(tensor *sz, R *I)
{
recur(sz->dims, sz->rnk, I);
}
#define KSTR_LEN 8
const char *X(rdft_kind_str)(rdft_kind kind)
{
static const char kstr[][KSTR_LEN] = {
"r2hc", "r2hc01", "r2hc10", "r2hc11",
"hc2r", "hc2r01", "hc2r10", "hc2r11",
"dht",
"redft00", "redft01", "redft10", "redft11",
"rodft00", "rodft01", "rodft10", "rodft11"
};
A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN);
return kstr[kind];
}
static void print(const problem *ego_, printer *p)
{
const problem_rdft *ego = (const problem_rdft *) ego_;
int i;
p->print(p, "(rdft %d %D %T %T",
X(ialignment_of)(ego->I),
(INT)(ego->O - ego->I),
ego->sz,
ego->vecsz);
for (i = 0; i < ego->sz->rnk; ++i)
p->print(p, " %d", (int)ego->kind[i]);
p->print(p, ")");
}
static void zero(const problem *ego_)
{
const problem_rdft *ego = (const problem_rdft *) ego_;
tensor *sz = X(tensor_append)(ego->vecsz, ego->sz);
X(rdft_zerotens)(sz, UNTAINT(ego->I));
X(tensor_destroy)(sz);
}
static const problem_adt padt =
{
PROBLEM_RDFT,
hash,
zero,
print,
destroy
};
/* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be
eliminated. REDFT/RODFT unit dimensions often have factors of 2.0
and suchlike from normalization and phases, although in principle
these constant factors from different dimensions could be combined. */
static int nontrivial(const iodim *d, rdft_kind kind)
{
return (d->n > 1 || kind == R2HC11 || kind == HC2R11
|| (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01));
}
problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz,
R *I, R *O, const rdft_kind *kind)
{
problem_rdft *ego;
int rnk = sz->rnk;
int i;
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
A(FINITE_RNK(sz->rnk));
if (UNTAINT(I) == UNTAINT(O))
I = O = JOIN_TAINT(I, O);
if (I == O && !X(tensor_inplace_locations)(sz, vecsz))
return X(mkproblem_unsolvable)();
for (i = rnk = 0; i < sz->rnk; ++i) {
A(sz->dims[i].n > 0);
if (nontrivial(sz->dims + i, kind[i]))
++rnk;
}
#if defined(STRUCT_HACK_KR)
ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
+ sizeof(rdft_kind)
* (rnk > 0 ? rnk - 1u : 0u), &padt);
#elif defined(STRUCT_HACK_C99)
ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft)
+ sizeof(rdft_kind) * (unsigned)rnk, &padt);
#else
ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt);
ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * (unsigned)rnk, PROBLEMS);
#endif
/* do compression and sorting as in X(tensor_compress), but take
transform kind into account (sigh) */
ego->sz = X(mktensor)(rnk);
for (i = rnk = 0; i < sz->rnk; ++i) {
if (nontrivial(sz->dims + i, kind[i])) {
ego->kind[rnk] = kind[i];
ego->sz->dims[rnk++] = sz->dims[i];
}
}
for (i = 0; i + 1 < rnk; ++i) {
int j;
for (j = i + 1; j < rnk; ++j)
if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) {
iodim dswap;
rdft_kind kswap;
dswap = ego->sz->dims[i];
ego->sz->dims[i] = ego->sz->dims[j];
ego->sz->dims[j] = dswap;
kswap = ego->kind[i];
ego->kind[i] = ego->kind[j];
ego->kind[j] = kswap;
}
}
for (i = 0; i < rnk; ++i)
if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00
|| ego->kind[i] == DHT
|| ego->kind[i] == HC2R))
ego->kind[i] = R2HC; /* size-2 transforms are equivalent */
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->I = I;
ego->O = O;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}
/* Same as X(mkproblem_rdft), but also destroy input tensors. */
problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz,
R *I, R *O, const rdft_kind *kind)
{
problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind);
X(tensor_destroy2)(vecsz, sz);
return p;
}
/* As above, but for rnk <= 1 only and takes a scalar kind parameter */
problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz,
R *I, R *O, rdft_kind kind)
{
A(sz->rnk <= 1);
return X(mkproblem_rdft)(sz, vecsz, I, O, &kind);
}
problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz,
R *I, R *O, rdft_kind kind)
{
A(sz->rnk <= 1);
return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind);
}
/* create a zero-dimensional problem */
problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O)
{
return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O,
(const rdft_kind *)0);
}