furnace/extern/fftw/rdft/direct-r2c.c

342 lines
8.8 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* direct RDFT solver, using r2c codelets */
#include "rdft/rdft.h"
typedef struct {
solver super;
const kr2c_desc *desc;
kr2c k;
int bufferedp;
} S;
typedef struct {
plan_rdft super;
stride rs, csr, csi;
stride brs, bcsr, bcsi;
INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
kr2c k;
const S *slv;
} P;
/*************************************************************
Nonbuffered code
*************************************************************/
static void apply_r2hc(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
ASSERT_ALIGNED_DOUBLE;
ego->k(I, I + ego->rs0, O, O + ego->ioffset,
ego->rs, ego->csr, ego->csi,
ego->vl, ego->ivs, ego->ovs);
}
static void apply_hc2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
ASSERT_ALIGNED_DOUBLE;
ego->k(O, O + ego->rs0, I, I + ego->ioffset,
ego->rs, ego->csr, ego->csi,
ego->vl, ego->ivs, ego->ovs);
}
/*************************************************************
Buffered code
*************************************************************/
/* should not be 2^k to avoid associativity conflicts */
static INT compute_batchsize(INT radix)
{
/* round up to multiple of 4 */
radix += 3;
radix &= -4;
return (radix + 2);
}
static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
{
X(cpy2d_ci)(I, buf,
ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
batchsz, ego->ivs, 1, 1);
if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
/* transform directly to output */
ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
O, O + ego->ioffset,
ego->brs, ego->csr, ego->csi,
batchsz, 1, ego->ovs);
} else {
/* transform to buffer and copy back */
ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
buf, buf + ego->bioffset,
ego->brs, ego->bcsr, ego->bcsi,
batchsz, 1, 1);
X(cpy2d_co)(buf, O,
ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
batchsz, 1, ego->ovs, 1);
}
}
static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
{
if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
/* transform directly from input */
ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
I, I + ego->ioffset,
ego->brs, ego->csr, ego->csi,
batchsz, ego->ivs, 1);
} else {
/* copy into buffer and transform in place */
X(cpy2d_ci)(I, buf,
ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
batchsz, ego->ivs, 1, 1);
ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
buf, buf + ego->bioffset,
ego->brs, ego->bcsr, ego->bcsi,
batchsz, 1, 1);
}
X(cpy2d_co)(buf, O,
ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
batchsz, 1, ego->ovs, 1);
}
static void iterate(const P *ego, R *I, R *O,
void (*dobatch)(const P *ego, R *I, R *O,
R *buf, INT batchsz))
{
R *buf;
INT vl = ego->vl;
INT n = ego->n;
INT i;
INT batchsz = compute_batchsize(n);
size_t bufsz = n * batchsz * sizeof(R);
BUF_ALLOC(R *, buf, bufsz);
for (i = 0; i < vl - batchsz; i += batchsz) {
dobatch(ego, I, O, buf, batchsz);
I += batchsz * ego->ivs;
O += batchsz * ego->ovs;
}
dobatch(ego, I, O, buf, vl - i);
BUF_FREE(buf, bufsz);
}
static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
{
iterate((const P *) ego_, I, O, dobatch_r2hc);
}
static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
{
iterate((const P *) ego_, I, O, dobatch_hc2r);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(stride_destroy)(ego->rs);
X(stride_destroy)(ego->csr);
X(stride_destroy)(ego->csi);
X(stride_destroy)(ego->brs);
X(stride_destroy)(ego->bcsr);
X(stride_destroy)(ego->bcsi);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *s = ego->slv;
if (ego->slv->bufferedp)
p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
X(rdft_kind_str)(s->desc->genus->kind),
/* hack */ WS(ego->bcsr, 1), ego->n,
ego->vl, s->desc->nam);
else
p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
X(rdft_kind_str)(s->desc->genus->kind), ego->n,
ego->vl, s->desc->nam);
}
static INT ioffset(rdft_kind kind, INT sz, INT s)
{
return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
}
static int applicable(const solver *ego_, const problem *p_)
{
const S *ego = (const S *) ego_;
const kr2c_desc *desc = ego->desc;
const problem_rdft *p = (const problem_rdft *) p_;
INT vl, ivs, ovs;
return (
1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
&& p->sz->dims[0].n == desc->n
&& p->kind[0] == desc->genus->kind
/* check strides etc */
&& X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
&& (0
/* can operate out-of-place */
|| p->I != p->O
/* computing one transform */
|| vl == 1
/* can operate in-place as long as strides are the same */
|| X(tensor_inplace_strides2)(p->sz, p->vecsz)
)
);
}
static int applicable_buf(const solver *ego_, const problem *p_)
{
const S *ego = (const S *) ego_;
const kr2c_desc *desc = ego->desc;
const problem_rdft *p = (const problem_rdft *) p_;
INT vl, ivs, ovs, batchsz;
return (
1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
&& p->sz->dims[0].n == desc->n
&& p->kind[0] == desc->genus->kind
/* check strides etc */
&& X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
&& (batchsz = compute_batchsize(desc->n), 1)
&& (0
/* can operate out-of-place */
|| p->I != p->O
/* can operate in-place as long as strides are the same */
|| X(tensor_inplace_strides2)(p->sz, p->vecsz)
/* can do it if the problem fits in the buffer, no matter
what the strides are */
|| vl <= batchsz
)
);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
P *pln;
const problem_rdft *p;
iodim *d;
INT rs, cs, b, n;
static const plan_adt padt = {
X(rdft_solve), X(null_awake), print, destroy
};
UNUSED(plnr);
if (ego->bufferedp) {
if (!applicable_buf(ego_, p_))
return (plan *)0;
} else {
if (!applicable(ego_, p_))
return (plan *)0;
}
p = (const problem_rdft *) p_;
if (R2HC_KINDP(p->kind[0])) {
rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
pln = MKPLAN_RDFT(P, &padt,
ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
} else {
rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
pln = MKPLAN_RDFT(P, &padt,
ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
}
d = p->sz->dims;
n = d[0].n;
pln->k = ego->k;
pln->n = n;
pln->rs0 = rs;
pln->rs = X(mkstride)(n, 2 * rs);
pln->csr = X(mkstride)(n, cs);
pln->csi = X(mkstride)(n, -cs);
pln->ioffset = ioffset(p->kind[0], n, cs);
b = compute_batchsize(n);
pln->brs = X(mkstride)(n, 2 * b);
pln->bcsr = X(mkstride)(n, b);
pln->bcsi = X(mkstride)(n, -b);
pln->bioffset = ioffset(p->kind[0], n, b);
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
pln->slv = ego;
X(ops_zero)(&pln->super.super.ops);
X(ops_madd2)(pln->vl / ego->desc->genus->vl,
&ego->desc->ops,
&pln->super.super.ops);
if (ego->bufferedp)
pln->super.super.ops.other += 2 * n * pln->vl;
pln->super.super.could_prune_now_p = !ego->bufferedp;
return &(pln->super.super);
}
/* constructor */
static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->k = k;
slv->desc = desc;
slv->bufferedp = bufferedp;
return &(slv->super);
}
solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
{
return mksolver(k, desc, 0);
}
solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
{
return mksolver(k, desc, 1);
}