furnace/extern/fftw/mpi/rdft2-rank-geq2-transposed.c

288 lines
8.2 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
across the first dimension only, and the output is transposed both
in data distribution and in ordering (for the first 2 dimensions).
Conversely, real-output (c2r) DFTs where the input is transposed.
We don't currently support transposed-input r2c or transposed-output
c2r transforms. */
#include "mpi-rdft2.h"
#include "mpi-transpose.h"
#include "rdft/rdft.h"
#include "dft/dft.h"
typedef struct {
solver super;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_rdft2 super;
plan *cld1, *cldt, *cld2;
INT vn;
int preserve_input;
} P;
static void apply_r2c(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft2 *cld1;
plan_dft *cld2;
plan_rdft *cldt;
/* RDFT2 local dimensions */
cld1 = (plan_rdft2 *) ego->cld1;
if (ego->preserve_input) {
cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
I = O;
}
else
cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
/* global transpose */
cldt = (plan_rdft *) ego->cldt;
cldt->apply(ego->cldt, I, O);
/* DFT final local dimension */
cld2 = (plan_dft *) ego->cld2;
cld2->apply(ego->cld2, O, O+1, O, O+1);
}
static void apply_c2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft2 *cld1;
plan_dft *cld2;
plan_rdft *cldt;
/* IDFT local dimensions */
cld2 = (plan_dft *) ego->cld2;
if (ego->preserve_input) {
cld2->apply(ego->cld2, I+1, I, O+1, O);
I = O;
}
else
cld2->apply(ego->cld2, I+1, I, I+1, I);
/* global transpose */
cldt = (plan_rdft *) ego->cldt;
cldt->apply(ego->cldt, I, O);
/* RDFT2 final local dimension */
cld1 = (plan_rdft2 *) ego->cld1;
cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
return (1
&& p->sz->rnk > 1
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
&& XM(is_local_after)(1, p->sz, IB)
&& XM(is_local_after)(2, p->sz, OB)
&& XM(num_blocks)(p->sz->dims[0].n,
p->sz->dims[0].b[OB]) == 1)
||
(p->flags == TRANSPOSED_IN && p->kind == HC2R
&& XM(is_local_after)(1, p->sz, OB)
&& XM(is_local_after)(2, p->sz, IB)
&& XM(num_blocks)(p->sz->dims[0].n,
p->sz->dims[0].b[IB]) == 1))
&& (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
|| !XM(rdft2_serial_applicable)(p))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cldt, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cldt);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))",
ego->preserve_input==2 ?"/p":"",
ego->cld1, ego->cldt, ego->cld2);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_rdft2 *p;
P *pln;
plan *cld1 = 0, *cldt = 0, *cld2 = 0;
R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
tensor *sz;
int i, my_pe, n_pes;
INT nrest, n1, b1;
static const plan_adt padt = {
XM(rdft2_solve), awake, print, destroy
};
block_kind k1, k2;
UNUSED(ego);
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_rdft2 *) p_;
I = p->I; O = p->O;
if (p->kind == R2HC) {
k1 = IB; k2 = OB;
r1 = (r0 = I) + p->vn;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
ci = (cr = O) + 1;
I = O;
}
else
ci = (cr = I) + 1;
io = ii = (ro = ri = O) + 1;
}
else {
k1 = OB; k2 = IB;
r1 = (r0 = O) + p->vn;
ci = (cr = O) + 1;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
ri = (ii = I) + 1;
ro = (io = O) + 1;
I = O;
}
else
ro = ri = (io = ii = I) + 1;
}
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
i = p->sz->rnk - 2; A(i >= 0);
sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
for (--i; i >= 0; --i) {
sz->dims[i].n = p->sz->dims[i+1].n;
sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
}
nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
{
INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
INT is = sz->dims[0].n * sz->dims[0].is;
INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
cld1 = X(mkplan_d)(plnr,
X(mkproblem_rdft2_d)(sz,
X(mktensor_2d)(b, is, is,
p->vn,ivs,ovs),
r0, r1, cr, ci, p->kind));
if (XM(any_true)(!cld1, p->comm)) goto nada;
}
nrest *= p->vn;
n1 = p->sz->dims[1].n;
b1 = p->sz->dims[1].b[k2];
if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
n1 = n1 / 2 + 1;
b1 = b1 == p->sz->dims[1].n ? n1 : b1;
}
if (p->kind == R2HC)
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
p->sz->dims[0].n, n1, nrest * 2,
I, O,
p->sz->dims[0].b[IB], b1,
p->comm, 0));
else
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
n1, p->sz->dims[0].n, nrest * 2,
I, O,
b1, p->sz->dims[0].b[OB],
p->comm, 0));
if (XM(any_true)(!cldt, p->comm)) goto nada;
{
INT is = p->sz->dims[0].n * nrest * 2;
INT b = XM(block)(n1, b1, my_pe);
cld2 = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(
p->sz->dims[0].n,
nrest * 2, nrest * 2),
X(mktensor_2d)(b, is, is,
nrest, 2, 2),
ri, ii, ro, io));
if (XM(any_true)(!cld2, p->comm)) goto nada;
}
pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
pln->cld1 = cld1;
pln->cldt = cldt;
pln->cld2 = cld2;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->vn = p->vn;
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
X(ops_add2)(&cldt->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cldt);
X(plan_destroy_internal)(cld1);
return (plan *) 0;
}
static solver *mksolver(int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(rdft2_rank_geq2_transposed_register)(planner *p)
{
int preserve_input;
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(preserve_input));
}