furnace/extern/fftw/mpi/dft-problem.c

137 lines
3.9 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "mpi-dft.h"
static void destroy(problem *ego_)
{
problem_mpi_dft *ego = (problem_mpi_dft *) ego_;
XM(dtensor_destroy)(ego->sz);
MPI_Comm_free(&ego->comm);
X(ifree)(ego_);
}
static void hash(const problem *p_, md5 *m)
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
int i;
X(md5puts)(m, "mpi-dft");
X(md5int)(m, p->I == p->O);
/* don't include alignment -- may differ between processes
X(md5int)(m, X(ialignment_of)(p->I));
X(md5int)(m, X(ialignment_of)(p->O));
... note that applicability of MPI plans does not depend
on alignment (although optimality may, in principle). */
XM(dtensor_md5)(m, p->sz);
X(md5INT)(m, p->vn);
X(md5int)(m, p->sign);
X(md5int)(m, p->flags);
MPI_Comm_size(p->comm, &i); X(md5int)(m, i);
A(XM(md5_equal)(*m, p->comm));
}
static void print(const problem *ego_, printer *p)
{
const problem_mpi_dft *ego = (const problem_mpi_dft *) ego_;
int i;
p->print(p, "(mpi-dft %d %d %d ",
ego->I == ego->O,
X(ialignment_of)(ego->I),
X(ialignment_of)(ego->O));
XM(dtensor_print)(ego->sz, p);
p->print(p, " %D %d %d", ego->vn, ego->sign, ego->flags);
MPI_Comm_size(ego->comm, &i); p->print(p, " %d)", i);
}
static void zero(const problem *ego_)
{
const problem_mpi_dft *ego = (const problem_mpi_dft *) ego_;
R *I = ego->I;
INT i, N;
int my_pe;
MPI_Comm_rank(ego->comm, &my_pe);
N = 2 * ego->vn * XM(total_block)(ego->sz, IB, my_pe);
for (i = 0; i < N; ++i) I[i] = K(0.0);
}
static const problem_adt padt =
{
PROBLEM_MPI_DFT,
hash,
zero,
print,
destroy
};
problem *XM(mkproblem_dft)(const dtensor *sz, INT vn,
R *I, R *O,
MPI_Comm comm,
int sign,
unsigned flags)
{
problem_mpi_dft *ego =
(problem_mpi_dft *)X(mkproblem)(sizeof(problem_mpi_dft), &padt);
int n_pes;
A(XM(dtensor_validp)(sz) && FINITE_RNK(sz->rnk));
MPI_Comm_size(comm, &n_pes);
A(n_pes >= XM(num_blocks_total)(sz, IB)
&& n_pes >= XM(num_blocks_total)(sz, OB));
A(vn >= 0);
A(sign == -1 || sign == 1);
/* enforce pointer equality if untainted pointers are equal */
if (UNTAINT(I) == UNTAINT(O))
I = O = JOIN_TAINT(I, O);
ego->sz = XM(dtensor_canonical)(sz, 1);
ego->vn = vn;
ego->I = I;
ego->O = O;
ego->sign = sign;
/* canonicalize: replace TRANSPOSED_IN with TRANSPOSED_OUT by
swapping the first two dimensions (for rnk > 1) */
if ((flags & TRANSPOSED_IN) && ego->sz->rnk > 1) {
ddim dim0 = ego->sz->dims[0];
ego->sz->dims[0] = ego->sz->dims[1];
ego->sz->dims[1] = dim0;
flags &= ~TRANSPOSED_IN;
flags ^= TRANSPOSED_OUT;
}
ego->flags = flags;
MPI_Comm_dup(comm, &ego->comm);
return &(ego->super);
}
problem *XM(mkproblem_dft_d)(dtensor *sz, INT vn,
R *I, R *O,
MPI_Comm comm,
int sign,
unsigned flags)
{
problem *p = XM(mkproblem_dft)(sz, vn, I, O, comm, sign, flags);
XM(dtensor_destroy)(sz);
return p;
}