furnace/extern/fftw/genfft/genutil.ml

329 lines
8.7 KiB
OCaml

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* utilities common to all generators *)
open Util
let choose_simd a b = if !Simdmagic.simd_mode then b else a
let unique_array n = array n (fun _ -> Unique.make ())
let unique_array_c n =
array n (fun _ ->
(Unique.make (), Unique.make ()))
let unique_v_array_c veclen n =
array veclen (fun _ ->
unique_array_c n)
let locative_array_c n rarr iarr loc vs =
array n (fun i ->
let klass = Unique.make () in
let (rloc, iloc) = loc i in
(Variable.make_locative rloc klass rarr i vs,
Variable.make_locative iloc klass iarr i vs))
let locative_v_array_c veclen n rarr iarr loc vs =
array veclen (fun v ->
array n (fun i ->
let klass = Unique.make () in
let (rloc, iloc) = loc v i in
(Variable.make_locative rloc klass (rarr v) i vs,
Variable.make_locative iloc klass (iarr v) i vs)))
let temporary_array n =
array n (fun i -> Variable.make_temporary ())
let temporary_array_c n =
let tmpr = temporary_array n
and tmpi = temporary_array n
in
array n (fun i -> (tmpr i, tmpi i))
let temporary_v_array_c veclen n =
array veclen (fun v -> temporary_array_c n)
let temporary_array_c n =
let tmpr = temporary_array n
and tmpi = temporary_array n
in
array n (fun i -> (tmpr i, tmpi i))
let load_c (vr, vi) = Complex.make (Expr.Load vr, Expr.Load vi)
let load_r (vr, vi) = Complex.make (Expr.Load vr, Expr.Num (Number.zero))
let twiddle_array nt w =
array (nt/2) (fun i ->
let stride = choose_simd (C.SInteger 1) (C.SConst "TWVL")
and klass = Unique.make () in
let (refr, refi) = (C.array_subscript w stride (2 * i),
C.array_subscript w stride (2 * i + 1))
in
let (kr, ki) = (Variable.make_constant klass refr,
Variable.make_constant klass refi)
in
load_c (kr, ki))
let load_array_c n var = array n (fun i -> load_c (var i))
let load_array_r n var = array n (fun i -> load_r (var i))
let load_array_hc n var =
array n (fun i ->
if (i < n - i) then
load_c (var i)
else if (i > n - i) then
Complex.times Complex.i (load_c (var (n - i)))
else
load_r (var i))
let load_v_array_c veclen n var =
array veclen (fun v -> load_array_c n (var v))
let store_c (vr, vi) x = [Complex.store_real vr x; Complex.store_imag vi x]
let store_r (vr, vi) x = Complex.store_real vr x
let store_i (vr, vi) x = Complex.store_imag vi x
let assign_array_c n dst src =
List.flatten
(rmap (iota n)
(fun i ->
let (ar, ai) = Complex.assign (dst i) (src i)
in [ar; ai]))
let assign_v_array_c veclen n dst src =
List.flatten
(rmap (iota veclen)
(fun v ->
assign_array_c n (dst v) (src v)))
let vassign_v_array_c veclen n dst src =
List.flatten
(rmap (iota n) (fun i ->
List.flatten
(rmap (iota veclen)
(fun v ->
let (ar, ai) = Complex.assign (dst v i) (src v i)
in [ar; ai]))))
let store_array_r n dst src =
rmap (iota n)
(fun i -> store_r (dst i) (src i))
let store_array_c n dst src =
List.flatten
(rmap (iota n)
(fun i -> store_c (dst i) (src i)))
let store_array_hc n dst src =
List.flatten
(rmap (iota n)
(fun i ->
if (i < n - i) then
store_c (dst i) (src i)
else if (i > n - i) then
[]
else
[store_r (dst i) (Complex.real (src i))]))
let store_v_array_c veclen n dst src =
List.flatten
(rmap (iota veclen)
(fun v ->
store_array_c n (dst v) (src v)))
let elementwise f n a = array n (fun i -> f (a i))
let conj_array_c = elementwise Complex.conj
let real_array_c = elementwise Complex.real
let imag_array_c = elementwise Complex.imag
let elementwise_v f veclen n a =
array veclen (fun v ->
array n (fun i -> f (a v i)))
let conj_v_array_c = elementwise_v Complex.conj
let real_v_array_c = elementwise_v Complex.real
let imag_v_array_c = elementwise_v Complex.imag
let transpose f i j = f j i
let symmetrize f i j = if i <= j then f i j else f j i
(* utilities for command-line parsing *)
let standard_arg_parse_fail _ = failwith "too many arguments"
let dump_dag alist =
let fnam = !Magic.dag_dump_file in
if (String.length fnam > 0) then
let ochan = open_out fnam in
begin
To_alist.dump (output_string ochan) alist;
close_out ochan;
end
let dump_alist alist =
let fnam = !Magic.alist_dump_file in
if (String.length fnam > 0) then
let ochan = open_out fnam in
begin
Expr.dump (output_string ochan) alist;
close_out ochan;
end
let dump_asched asched =
let fnam = !Magic.asched_dump_file in
if (String.length fnam > 0) then
let ochan = open_out fnam in
begin
Annotate.dump (output_string ochan) asched;
close_out ochan;
end
(* utilities for optimization *)
let standard_scheduler dag =
let optim = Algsimp.algsimp dag in
let alist = To_alist.to_assignments optim in
let _ = dump_alist alist in
let _ = dump_dag alist in
if !Magic.precompute_twiddles then
Schedule.isolate_precomputations_and_schedule alist
else
Schedule.schedule alist
let standard_optimizer dag =
let sched = standard_scheduler dag in
let annot = Annotate.annotate [] sched in
let _ = dump_asched annot in
annot
let size = ref None
let sign = ref (-1)
let speclist = [
"-n", Arg.Int(fun i -> size := Some i), " generate a codelet of size <n>";
"-sign",
Arg.Int(fun i ->
if (i > 0) then
sign := 1
else
sign := (-1)),
" sign of transform";
]
let check_size () =
match !size with
| Some i -> i
| None -> failwith "must specify -n"
let expand_name name = if name = "" then "noname" else name
let declare_register_fcn name =
if name = "" then
"void NAME(planner *p)\n"
else
"void " ^ (choose_simd "X" "XSIMD") ^
"(codelet_" ^ name ^ ")(planner *p)\n"
let stringify name =
if name = "" then "STRINGIZE(NAME)" else
choose_simd ("\"" ^ name ^ "\"")
("XSIMD_STRING(\"" ^ name ^ "\")")
let parse user_speclist usage =
Arg.parse
(user_speclist @ speclist @ Magic.speclist @ Simdmagic.speclist)
standard_arg_parse_fail
usage
let rec list_to_c = function
[] -> ""
| [a] -> (string_of_int a)
| a :: b -> (string_of_int a) ^ ", " ^ (list_to_c b)
let rec list_to_comma = function
| [a; b] -> C.Comma (a, b)
| a :: b -> C.Comma (a, list_to_comma b)
| _ -> failwith "list_to_comma"
type stride = Stride_variable | Fixed_int of int | Fixed_string of string
let either_stride a b =
match a with
Fixed_int x -> C.SInteger x
| Fixed_string x -> C.SConst x
| _ -> b
let stride_fixed = function
Stride_variable -> false
| _ -> true
let arg_to_stride s =
try
Fixed_int (int_of_string s)
with Failure "int_of_string" ->
Fixed_string s
let stride_to_solverparm = function
Stride_variable -> "0"
| Fixed_int x -> string_of_int x
| Fixed_string x -> x
let stride_to_string s = function
Stride_variable -> s
| Fixed_int x -> string_of_int x
| Fixed_string x -> x
(* output the command line *)
let cmdline () =
List.fold_right (fun a b -> a ^ " " ^ b) (Array.to_list Sys.argv) ""
let unparse tree =
"/* Generated by: " ^ (cmdline ()) ^ "*/\n\n" ^
(C.print_cost tree) ^
(if String.length !Magic.inklude > 0
then
(Printf.sprintf "#include \"%s\"\n\n" !Magic.inklude)
else "") ^
(if !Simdmagic.simd_mode then
Simd.unparse_function tree
else
C.unparse_function tree)
let finalize_fcn ast =
let mergedecls = function
C.Block (d1, [C.Block (d2, s)]) -> C.Block (d1 @ d2, s)
| x -> x
and extract_constants =
if !Simdmagic.simd_mode then
Simd.extract_constants
else
C.extract_constants
in mergedecls (C.Block (extract_constants ast, [ast; C.Simd_leavefun]))
let twinstr_to_string vl x =
if !Simdmagic.simd_mode then
Twiddle.twinstr_to_simd_string vl x
else
Twiddle.twinstr_to_c_string x
let make_volatile_stride n x =
C.CCall ("MAKE_VOLATILE_STRIDE", C.Comma((C.Integer n), x))