furnace/extern/fftw/genfft/complex.ml

148 lines
4.7 KiB
OCaml

(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* abstraction layer for complex operations *)
open Littlesimp
open Expr
(* type of complex expressions *)
type expr = CE of Expr.expr * Expr.expr
let two = CE (makeNum Number.two, makeNum Number.zero)
let one = CE (makeNum Number.one, makeNum Number.zero)
let i = CE (makeNum Number.zero, makeNum Number.one)
let zero = CE (makeNum Number.zero, makeNum Number.zero)
let make (r, i) = CE (r, i)
let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
makeNum Number.zero)
let inverse_int_sqrt n =
CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
makeNum Number.zero)
let int_sqrt n =
CE (makeNum (Number.sqrt (Number.of_int n)),
makeNum Number.zero)
let nan x = CE (NaN x, makeNum Number.zero)
let half = inverse_int 2
let times3x3 (CE (a, b)) (CE (c, d)) =
CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
makeTimes (b, makePlus [c; makeUminus (d)])],
makePlus [makeTimes (a, makePlus [c; d]);
makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
let times (CE (a, b)) (CE (c, d)) =
if not !Magic.threemult then
CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
makePlus [makeTimes (a, d); makeTimes (b, c)])
else if is_constant c && is_constant d then
times3x3 (CE (a, b)) (CE (c, d))
else (* hope a and b are constant expressions *)
times3x3 (CE (c, d)) (CE (a, b))
let ctimes (CE (a, _)) (CE (c, _)) =
CE (CTimes (a, c), makeNum Number.zero)
let ctimesj (CE (a, _)) (CE (c, _)) =
CE (CTimesJ (a, c), makeNum Number.zero)
(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
let exp n i =
let (c, s) = Number.cexp n i
in CE (makeNum c, makeNum s)
(* various trig functions evaluated at (2*pi*i/n * m) *)
let sec n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
let csc n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
let tan n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div s c), makeNum Number.zero)
let cot n m =
let (c, s) = Number.cexp n m
in CE (makeNum (Number.div c s), makeNum Number.zero)
(* complex sum *)
let plus a =
let rec unzip_complex = function
[] -> ([], [])
| ((CE (a, b)) :: s) ->
let (r,i) = unzip_complex s
in
(a::r), (b::i) in
let (c, d) = unzip_complex a in
CE (makePlus c, makePlus d)
(* extract real/imaginary *)
let real (CE (a, b)) = CE (a, makeNum Number.zero)
let imag (CE (a, b)) = CE (b, makeNum Number.zero)
let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
let conj (CE (a, b)) = CE (a, makeUminus b)
(* abstraction of sum_{i=0}^{n-1} *)
let sigma a b f = plus (List.map f (Util.interval a b))
(* store and assignment operations *)
let store_real v (CE (a, b)) = Expr.Store (v, a)
let store_imag v (CE (a, b)) = Expr.Store (v, b)
let store (vr, vi) x = (store_real vr x, store_imag vi x)
let assign_real v (CE (a, b)) = Expr.Assign (v, a)
let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
(************************
shortcuts
************************)
let (@*) = times
let (@+) a b = plus [a; b]
let (@-) a b = plus [a; uminus b]
(* type of complex signals *)
type signal = int -> expr
(* make a finite signal infinite *)
let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
let hermitian n a =
Util.array n (fun i ->
if (i = 0) then real (a 0)
else if (i < n - i) then (a i)
else if (i > n - i) then conj (a (n - i))
else real (a i))
let antihermitian n a =
Util.array n (fun i ->
if (i = 0) then iimag (a 0)
else if (i < n - i) then (a i)
else if (i > n - i) then uminus (conj (a (n - i)))
else iimag (a i))