furnace/extern/fftw/dft/dftw-direct.c

333 lines
9.0 KiB
C

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "dft/ct.h"
typedef struct {
ct_solver super;
const ct_desc *desc;
int bufferedp;
kdftw k;
} S;
typedef struct {
plan_dftw super;
kdftw k;
INT r;
stride rs;
INT m, ms, v, vs, mb, me, extra_iter;
stride brs;
twid *td;
const S *slv;
} P;
/*************************************************************
Nonbuffered code
*************************************************************/
static void apply(const plan *ego_, R *rio, R *iio)
{
const P *ego = (const P *) ego_;
INT i;
ASSERT_ALIGNED_DOUBLE;
for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) {
INT mb = ego->mb, ms = ego->ms;
ego->k(rio + mb*ms, iio + mb*ms, ego->td->W,
ego->rs, mb, ego->me, ms);
}
}
static void apply_extra_iter(const plan *ego_, R *rio, R *iio)
{
const P *ego = (const P *) ego_;
INT i, v = ego->v, vs = ego->vs;
INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms;
ASSERT_ALIGNED_DOUBLE;
for (i = 0; i < v; ++i, rio += vs, iio += vs) {
ego->k(rio + mb*ms, iio + mb*ms, ego->td->W,
ego->rs, mb, mm, ms);
ego->k(rio + mm*ms, iio + mm*ms, ego->td->W,
ego->rs, mm, mm+2, 0);
}
}
/*************************************************************
Buffered code
*************************************************************/
static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf)
{
INT brs = WS(ego->brs, 1);
INT rs = WS(ego->rs, 1);
INT ms = ego->ms;
X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1,
ego->r, rs, brs,
me - mb, ms, 2);
ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2);
X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms,
ego->r, brs, rs,
me - mb, 2, ms);
}
/* must be even for SIMD alignment; should not be 2^k to avoid
associativity conflicts */
static INT compute_batchsize(INT radix)
{
/* round up to multiple of 4 */
radix += 3;
radix &= -4;
return (radix + 2);
}
static void apply_buf(const plan *ego_, R *rio, R *iio)
{
const P *ego = (const P *) ego_;
INT i, j, v = ego->v, r = ego->r;
INT batchsz = compute_batchsize(r);
R *buf;
INT mb = ego->mb, me = ego->me;
size_t bufsz = r * batchsz * 2 * sizeof(R);
BUF_ALLOC(R *, buf, bufsz);
for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) {
for (j = mb; j + batchsz < me; j += batchsz)
dobatch(ego, rio, iio, j, j + batchsz, buf);
dobatch(ego, rio, iio, j, me, buf);
}
BUF_FREE(buf, bufsz);
}
/*************************************************************
common code
*************************************************************/
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
ego->r * ego->m, ego->r, ego->m + ego->extra_iter);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(stride_destroy)(ego->brs);
X(stride_destroy)(ego->rs);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const S *slv = ego->slv;
const ct_desc *e = slv->desc;
if (slv->bufferedp)
p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")",
compute_batchsize(ego->r), ego->r,
X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
else
p->print(p, "(dftw-direct-%D/%D%v \"%s\")",
ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
}
static int applicable0(const S *ego,
INT r, INT irs, INT ors,
INT m, INT ms,
INT v, INT ivs, INT ovs,
INT mb, INT me,
R *rio, R *iio,
const planner *plnr, INT *extra_iter)
{
const ct_desc *e = ego->desc;
UNUSED(v);
return (
1
&& r == e->radix
&& irs == ors /* in-place along R */
&& ivs == ovs /* in-place along V */
/* check for alignment/vector length restrictions */
&& ((*extra_iter = 0,
e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr))
||
(*extra_iter = 1,
(1
/* FIXME: require full array, otherwise some threads
may be extra_iter and other threads won't be.
Generating the proper twiddle factors is a pain in
this case */
&& mb == 0 && me == m
&& e->genus->okp(e, rio, iio, irs, ivs,
m, mb, me - 1, ms, plnr)
&& e->genus->okp(e, rio, iio, irs, ivs,
m, me - 1, me + 1, ms, plnr))))
&& (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs,
m, mb, me - *extra_iter, ms, plnr))
);
}
static int applicable0_buf(const S *ego,
INT r, INT irs, INT ors,
INT m, INT ms,
INT v, INT ivs, INT ovs,
INT mb, INT me,
R *rio, R *iio,
const planner *plnr)
{
const ct_desc *e = ego->desc;
INT batchsz;
UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio);
return (
1
&& r == e->radix
&& irs == ors /* in-place along R */
&& ivs == ovs /* in-place along V */
/* check for alignment/vector length restrictions, both for
batchsize and for the remainder */
&& (batchsz = compute_batchsize(r), 1)
&& (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
m, mb, mb + batchsz, 2, plnr))
&& (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
m, mb, me, 2, plnr))
);
}
static int applicable(const S *ego,
INT r, INT irs, INT ors,
INT m, INT ms,
INT v, INT ivs, INT ovs,
INT mb, INT me,
R *rio, R *iio,
const planner *plnr, INT *extra_iter)
{
if (ego->bufferedp) {
*extra_iter = 0;
if (!applicable0_buf(ego,
r, irs, ors, m, ms, v, ivs, ovs, mb, me,
rio, iio, plnr))
return 0;
} else {
if (!applicable0(ego,
r, irs, ors, m, ms, v, ivs, ovs, mb, me,
rio, iio, plnr, extra_iter))
return 0;
}
if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
v, m * r, r))
return 0;
if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr))
return 0;
return 1;
}
static plan *mkcldw(const ct_solver *ego_,
INT r, INT irs, INT ors,
INT m, INT ms,
INT v, INT ivs, INT ovs,
INT mstart, INT mcount,
R *rio, R *iio,
planner *plnr)
{
const S *ego = (const S *) ego_;
P *pln;
const ct_desc *e = ego->desc;
INT extra_iter;
static const plan_adt padt = {
0, awake, print, destroy
};
A(mstart >= 0 && mstart + mcount <= m);
if (!applicable(ego,
r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount,
rio, iio, plnr, &extra_iter))
return (plan *)0;
if (ego->bufferedp) {
pln = MKPLAN_DFTW(P, &padt, apply_buf);
} else {
pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply);
}
pln->k = ego->k;
pln->rs = X(mkstride)(r, irs);
pln->td = 0;
pln->r = r;
pln->m = m;
pln->ms = ms;
pln->v = v;
pln->vs = ivs;
pln->mb = mstart;
pln->me = mstart + mcount;
pln->slv = ego;
pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
pln->extra_iter = extra_iter;
X(ops_zero)(&pln->super.super.ops);
X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops);
if (ego->bufferedp) {
/* 8 load/stores * N * V */
pln->super.super.ops.other += 8 * r * mcount * v;
}
pln->super.super.could_prune_now_p =
(!ego->bufferedp && r >= 5 && r < 64 && m >= r);
return &(pln->super.super);
}
static void regone(planner *plnr, kdftw codelet,
const ct_desc *desc, int dec, int bufferedp)
{
S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0);
slv->k = codelet;
slv->desc = desc;
slv->bufferedp = bufferedp;
REGISTER_SOLVER(plnr, &(slv->super.super));
if (X(mksolver_ct_hook)) {
slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix,
dec, mkcldw, 0);
slv->k = codelet;
slv->desc = desc;
slv->bufferedp = bufferedp;
REGISTER_SOLVER(plnr, &(slv->super.super));
}
}
void X(regsolver_ct_directw)(planner *plnr, kdftw codelet,
const ct_desc *desc, int dec)
{
regone(plnr, codelet, desc, dec, /* bufferedp */ 0);
regone(plnr, codelet, desc, dec, /* bufferedp */ 1);
}