furnace/extern/SAASound/src/SAAEnv.cpp

381 lines
12 KiB
C++
Executable File

// Part of SAASound copyright 1998-2018 Dave Hooper <dave@beermex.com>
//
// SAAEnv.cpp: implementation of the CSAAEnv class.
//
//////////////////////////////////////////////////////////////////////
#include "SAASound.h"
#include "types.h"
#include "SAAEnv.h"
//////////////////////////////////////////////////////////////////////
// Static member initialisation
//////////////////////////////////////////////////////////////////////
const ENVDATA CSAAEnv::cs_EnvData[8] =
{
{1,false, { {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}}},
{1,true, { {{15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15},{15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15}},
{{14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14},{14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14}}}},
{1,false, { {{15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{14,14,12,12,10,10,8,8,6,6,4,4,2,2,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}}},
{1,true, { {{15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{14,14,12,12,10,10,8,8,6,6,4,4,2,2,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}}},
{2,false, { {{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}},
{{0,0,2,2,4,4,6,6,8,8,10,10,12,12,14,14}, {14,14,12,12,10,10,8,8,6,6,4,4,2,2,0,0}}}},
{2,true, { {{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, {15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}},
{{0,0,2,2,4,4,6,6,8,8,10,10,12,12,14,14}, {14,14,12,12,10,10,8,8,6,6,4,4,2,2,0,0}}}},
{1,false, { {{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{0,0,2,2,4,4,6,6,8,8,10,10,12,12,14,14}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}}},
{1,true, { {{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}},
{{0,0,2,2,4,4,6,6,8,8,10,10,12,12,14,14}, {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}}}
};
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CSAAEnv::CSAAEnv()
:
m_bEnabled(false),
m_nPhase(0),
m_nPhasePosition(0),
m_bEnvelopeEnded(true),
m_nResolution(1),
m_bNewData(false),
m_nNextData(0)
{
// initialise itself with the value 'zero'
SetEnvControl(0);
}
CSAAEnv::~CSAAEnv()
{
// Nothing to do
}
void CSAAEnv::InternalClock(void)
{
// will only do something if envelope clock mode is set to internal
// and the env control is enabled
if (m_bEnabled && (!m_bClockExternally)) Tick();
}
void CSAAEnv::ExternalClock(void)
{
// will only do something if envelope clock mode is set to external
// and the env control is enabled
if (m_bClockExternally && m_bEnabled) Tick();
}
void CSAAEnv::SetEnvControl(int nData)
{
// process immediate stuff first:
// start with the Enabled flag. if env is disabled,
// there's not much to do
bool bEnabled = ((nData & 0x80)==0x80);
if (!bEnabled && !m_bEnabled)
return;
m_bEnabled = bEnabled;
if (!m_bEnabled)
{
// env control was enabled, and now disabled
// Any subsequent env control changes are immediate.
m_bEnvelopeEnded = true;
return;
}
// Resolution (3bit/4bit) is also immediately processed
int new_resolution = ((nData & 0x10) == 0x10) ? 2 : 1;
// NOTE: undocumented behaviour when changing resolution mid-waveform
// Empirically, the following matches observations:
// * When ticking the env generator with 4-bit resolution, the position += 1
// * When ticking the env generator with 3-bit resolution, the position += 2
// * When changing between 4-bit resolution and 3-bit resolution
// without ticking the env generator, the position is unchanged
// (although, effectively, the LSB is ignored. Purely as an implementation
// detail, I'm implementing this as clearing the LSB ie LSB=0; see next point)
// * When changing between 3-bit resolution and 4-bit resolution
// without ticking the env generator, the position LSB is set to 1
// See test case: envext_34b
//
if (m_nResolution == 1 && new_resolution == 2)
{
// change from 4-bit to 3-bit
m_nPhasePosition &= 0xe;
}
else if (m_nResolution == 2 && new_resolution == 1)
{
// change from 3-bit to 4-bit
m_nPhasePosition |= 0x1;
}
m_nResolution = new_resolution;
// now buffered stuff: but only if it's ok to, and only if the
// envgenerator is not disabled. otherwise it just stays buffered until
// the Tick() function sets m_bEnvelopeEnded to true and realises there is
// already some new data waiting
if (m_bEnvelopeEnded)
{
SetNewEnvData(nData); // also does the SetLevels() call for us.
m_bNewData=false;
}
else
{
// since the 'next resolution' changes arrive unbuffered, we
// may need to change the current level because of this:
SetLevels();
// store current new data, and set the newdata flag:
m_bNewData = true;
m_nNextData = nData;
}
}
int CSAAEnv::LeftLevel(void) const
{
return m_nLeftLevel;
}
int CSAAEnv::RightLevel(void) const
{
return m_nRightLevel;
}
inline void CSAAEnv::Tick(void)
{
// if disabled, do nothing
if (!m_bEnabled) // m_bEnabled is set directly, not buffered, so this is ok
{
// for sanity, reset stuff:
m_bEnvelopeEnded = true;
m_nPhase = 0;
m_nPhasePosition = 0;
return;
}
// else : m_bEnabled
if (m_bEnvelopeEnded)
{
// do nothing
// (specifically, don't change the values of m_bEnvelopeEnded,
// m_nPhase and m_nPhasePosition, as these will still be needed
// by SetLevels() should it be called again)
return;
}
// else : !m_bEnvelopeEnded
// Continue playing the same envelope ...
// increments the phaseposition within an envelope.
// also handles looping and resolution appropriately.
// Changes the level of the envelope accordingly
// through calling SetLevels() . This must be called after making
// any changes that will affect the output levels of the env controller!!
// SetLevels also handles left-right channel inverting
// increment phase position
m_nPhasePosition += m_nResolution;
// if this means we've gone past 16 (the end of a phase)
// then change phase, and if necessary, loop
// Refer to datasheet for meanings of (3) and (4) in following text
// w.r.t SAA1099 envelopes
// Note that we will always reach position (3) or (4), even if we keep toggling
// resolution from 4-bit to 3-bit and back, because the counter will always wrap to 0.
// In fact it's quite elegant:
// No matter how you increment and toggle and increment and toggle, the counter
// will at some point be either 0xe (either 4-bit mode or 3-bit mode) or 0xf (4-bit mode only).
// Depending on the mode, even if you change the mode, the next increment,
// or the one after it, will then take it to 0.
// 0xe + 2 (3bit mode) => 0x0
// 0xe + 1 (4bit mode) => 0xf
// 0xf + 1 (4bit mode) => 0x0
// 0xe -> (toggle 3bit mode to 4bit mode) => 0xf
// 0xe -> (toggle 4bit mode to 3bit mode) => 0xe
// 0xf -> (toggle 4bit mode to 3bit mode) => 0xe
//
// but there is a subtlety (of course), which is that any changes at point (3)
// can take place immediately you hit point (3), but changes at point (4) are actually
// only acted upon when the counter transitions from 0xe (or 0xf) to 0x0 (which also
// means that, for these looping envelopes, which are the ones that have a point(4),
// immediately after the counter wrapping to 0x0, a write to the env data register will
// NOT set the waveform and will NOT reset the phase/phaseposition (even though it
// will still let you toggle the 4bit/3bit mode, which will change the phaseposition LSB!)
// See test case: envext_34c
bool bProcessNewDataIfAvailable = false;
if (m_nPhasePosition >= 16)
{
m_nPhase++;
// if we should loop, then do so - and we've reached position (4)
// otherwise, if we shouldn't loop,
// then we've reached position (3) and so we say that
// we're ok for new data.
if (m_nPhase == m_nNumberOfPhases)
{
// at position (3) or (4)
if (!m_bLooping)
{
// position (3) only
// note that it seems that the sustain level is ALWAYS zero
// in the case of non-looping waveforms
m_bEnvelopeEnded = true;
bProcessNewDataIfAvailable = true;
}
else
{
// position (4) only
// note that any data already latched is ONLY acted upon
// at THIS point. If (after this Tick has completed) any new
// env data is written, it will NOT be acted upon, until
// we get back to position (4) again.
// this is why m_bEnvelopeEnded (which affects the behaviour
// of the SetEnvControl method) is FALSE here.
// See test case: envext_34c (as noted earlier)
m_bEnvelopeEnded = false;
// set phase pointer to start of envelope for loop
// and reset m_nPhasePosition
m_nPhase=0;
m_nPhasePosition -= 16;
bProcessNewDataIfAvailable = true;
}
}
else // (m_nPhase < m_nNumberOfPhases)
{
// not at position (3) or (4) ...
// (i.e., we're in the middle of an envelope with
// more than one phase. Specifically, we're in
// the middle of envelope 4 or 5 - the
// triangle envelopes - but that's not important)
// any commands sent to this envelope controller
// will be buffered. Set the flag to indicate this.
m_bEnvelopeEnded = false;
m_nPhasePosition -= 16;
}
}
else // (m_nPhasePosition < 16)
{
// still within the same phase;
// but, importantly, we are no longer at the start of the phase ...
// so new data cannot be acted on immediately, and must
// be buffered
m_bEnvelopeEnded = false;
// Phase and PhasePosition have already been updated.
// SetLevels() will need to be called to actually calculate
// the output 'level' of this envelope controller
}
// if we have new (buffered) data, now is the time to act on it
if (m_bNewData && bProcessNewDataIfAvailable)
{
m_bNewData = false;
SetNewEnvData(m_nNextData);
}
else
{
// ok, we didn't have any new buffered date to act on,
// so we just call SetLevels() to calculate the output level
// for whatever the current envelope is
SetLevels();
}
}
inline void CSAAEnv::SetLevels(void)
{
// sets m_nLeftLevel
// Also sets m_nRightLevel in terms of m_nLeftLevel
// and m_bInvertRightChannel
// m_nResolution: 1 means 4-bit resolution; 2 means 3-bit resolution. Resolution of envelope waveform.
// Note that this is handled 'immediately', and doesn't wait for synchronisation of
// the envelope waveform (this is important, see test case EnvExt_imm)
// It is therefore possible to switch between 4-bit and 3-bit resolution in the middle of
// an envelope waveform. if you are at an 'odd' phase position, you would be able to hear
// the difference. if you are at an 'even' phase position, the volume level for 4-bit
// and 3-bit would be the same.
// NOTE: additional test cases are required.
switch (m_nResolution)
{
case 1: // 4 bit res waveforms
default:
{
// special case: if envelope is not a looping one, and we're at the end
// then our level should be zero (all of the non-looping waveforms have
// a sustain level of zero):
if (m_bEnvelopeEnded && !m_bLooping)
m_nLeftLevel = 0;
else
m_nLeftLevel = m_pEnvData->nLevels[0][m_nPhase][m_nPhasePosition];
if (m_bInvertRightChannel)
m_nRightLevel = 15-m_nLeftLevel;
else
m_nRightLevel = m_nLeftLevel;
break;
}
case 2: // 3 bit res waveforms
{
// special case: if envelope is not a looping one, and we're at the end
// then our level should be zero (all of the non-looping waveforms have
// a sustain level of zero):
if (m_bEnvelopeEnded && !m_bLooping)
m_nLeftLevel = 0;
else
m_nLeftLevel = m_pEnvData->nLevels[1][m_nPhase][m_nPhasePosition];
if (m_bInvertRightChannel)
m_nRightLevel = 14-m_nLeftLevel;
else
m_nRightLevel = m_nLeftLevel;
break;
}
}
}
inline void CSAAEnv::SetNewEnvData(int nData)
{
// loads envgenerator's registers according to the bits set
// in nData
m_nPhase = 0;
m_nPhasePosition = 0;
m_pEnvData = &(cs_EnvData[(nData >> 1) & 0x07]);
m_bInvertRightChannel = ((nData & 0x01) == 0x01);
m_bClockExternally = ((nData & 0x20) == 0x20);
m_nNumberOfPhases = m_pEnvData->nNumberOfPhases;
m_bLooping = m_pEnvData->bLooping;
m_nResolution = (((nData & 0x10)==0x10) ? 2 : 1);
m_bEnabled = ((nData & 0x80) == 0x80);
if (m_bEnabled)
{
m_bEnvelopeEnded = false;
// is this right?
// YES. See test case EnvExt_34c (setting data multiple times
// when at a point (3) resets the waveform so you're no longer
// at a point (3).
}
else
{
// DISABLED - so set stuff accordingly
m_bEnvelopeEnded = true;
m_nPhase = 0;
m_nPhasePosition = 0;
}
SetLevels();
}