Merge branch 'wintrace2'

This commit is contained in:
tildearrow 2024-02-04 02:05:29 -05:00
commit 9a2b19630e
19 changed files with 1792 additions and 15 deletions

View file

@ -607,6 +607,8 @@ src/engine/platform/sound/ted-sound.c
src/engine/platform/sound/c140_c219.c
src/engine/platform/sound/dave/dave.cpp
src/engine/platform/oplAInterface.cpp
src/engine/platform/ym2608Interface.cpp
src/engine/platform/ym2610Interface.cpp
@ -707,6 +709,7 @@ src/engine/platform/ted.cpp
src/engine/platform/c140.cpp
src/engine/platform/esfm.cpp
src/engine/platform/powernoise.cpp
src/engine/platform/dave.cpp
src/engine/platform/pcmdac.cpp
src/engine/platform/dummy.cpp
@ -916,8 +919,19 @@ set(USED_SOURCES ${ENGINE_SOURCES} ${AUDIO_SOURCES} ${CLI_SOURCES} src/main.cpp)
if (USE_BACKWARD)
list(APPEND USED_SOURCES src/backtrace.cpp)
if (WIN32 AND CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
list(APPEND DEPENDENCIES_LIBRARIES dbghelp psapi)
if (WIN32)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag(-gcodeview GCC_CODEVIEW)
if (GCC_CODEVIEW)
set(CMAKE_EXE_LINKER_FLAGS "-Wl,--pdb= ")
add_compile_options(-gcodeview)
message(STATUS "Enabling -gcodeview flag for backward-cpp.")
else()
message(WARNING "Could not enable -gcodeview! backward-cpp will not work.")
endif()
list(APPEND DEPENDENCIES_LIBRARIES dbghelp psapi)
endif()
endif()
find_library(EXECINFO_IS_LIBRARY execinfo)
if (EXECINFO_IS_LIBRARY)

View file

@ -238,6 +238,7 @@ size | description
| - 0xd1: ESFM - 18 channels
| - 0xd2: Ensoniq ES5503 (hard pan) - 32 channels (UNAVAILABLE)
| - 0xd4: PowerNoise - 4 channels
| - 0xd5: Dave - 6 channels (UNAVAILABLE)
| - 0xde: YM2610B extended - 19 channels
| - 0xe0: QSound - 19 channels
| - 0xfc: Pong - 1 channel

View file

@ -15,7 +15,7 @@ fi
cd win32build
# TODO: potential Arch-ism?
i686-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2 -march=i586" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type -march=i586" -DBUILD_SHARED_LIBS=OFF -DSUPPORT_XP=OFF -DWITH_RENDER_DX11=ON -DUSE_BACKWARD=OFF -DSDL_SSE2=OFF -DSDL_SSE3=OFF -DENABLE_SSE=OFF -DENABLE_SSE2=OFF -DENABLE_AVX=OFF -DENABLE_AVX2=OFF .. || exit 1
i686-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2 -march=i586" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type -march=i586" -DBUILD_SHARED_LIBS=OFF -DSUPPORT_XP=OFF -DWITH_RENDER_DX11=ON -DUSE_BACKWARD=ON -DSDL_SSE2=OFF -DSDL_SSE3=OFF -DENABLE_SSE=OFF -DENABLE_SSE2=OFF -DENABLE_AVX=OFF -DENABLE_AVX2=OFF .. || exit 1
make -j8 || exit 1
cd ..

View file

@ -15,7 +15,7 @@ fi
cd winbuild
# TODO: potential Arch-ism?
x86_64-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type -Wno-deprecated-declarations -Werror" .. || exit 1
x86_64-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type -Wno-deprecated-declarations -Werror" -DUSE_BACKWARD=ON .. || exit 1
make -j8 || exit 1
cd ..

View file

@ -15,7 +15,7 @@ fi
cd xpbuild
# TODO: potential Arch-ism?
i686-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type" -DBUILD_SHARED_LIBS=OFF -DSUPPORT_XP=ON -DWITH_RENDER_DX11=OFF -DSDL_SSE2=OFF -DSDL_SSE3=OFF -DENABLE_SSE=OFF -DENABLE_SSE2=OFF -DENABLE_AVX=OFF -DENABLE_AVX2=OFF .. || exit 1
i686-w64-mingw32-cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_C_FLAGS="-O2" -DCMAKE_CXX_FLAGS="-O2 -Wall -Wextra -Wno-unused-parameter -Wno-cast-function-type" -DBUILD_SHARED_LIBS=OFF -DSUPPORT_XP=ON -DWITH_RENDER_DX11=OFF -DSDL_SSE2=OFF -DSDL_SSE3=OFF -DENABLE_SSE=OFF -DENABLE_SSE2=OFF -DENABLE_AVX=OFF -DENABLE_AVX2=OFF -DUSE_BACKWARD=ON .. || exit 1
make -j8 || exit 1
cd ..

View file

@ -84,6 +84,7 @@
#include "platform/pcmdac.h"
#include "platform/esfm.h"
#include "platform/powernoise.h"
#include "platform/dave.h"
#include "platform/dummy.h"
#include "../ta-log.h"
#include "song.h"
@ -652,6 +653,9 @@ void DivDispatchContainer::init(DivSystem sys, DivEngine* eng, int chanCount, do
case DIV_SYSTEM_POWERNOISE:
dispatch=new DivPlatformPowerNoise;
break;
case DIV_SYSTEM_DAVE:
dispatch=new DivPlatformDave;
break;
case DIV_SYSTEM_DUMMY:
dispatch=new DivPlatformDummy;
break;

View file

@ -1062,6 +1062,8 @@ void DivInstrument::putInsData2(SafeWriter* w, bool fui, const DivSong* song, bo
case DIV_INS_POWERNOISE_SLOPE:
featurePN=true;
break;
case DIV_INS_DAVE:
break;
case DIV_INS_MAX:
break;
case DIV_INS_NULL:

View file

@ -88,6 +88,7 @@ enum DivInstrumentType: unsigned short {
DIV_INS_ESFM=55,
DIV_INS_POWERNOISE=56,
DIV_INS_POWERNOISE_SLOPE=57,
DIV_INS_DAVE=58,
DIV_INS_MAX,
DIV_INS_NULL
};

View file

@ -0,0 +1,545 @@
/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2024 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "dave.h"
#include "../engine.h"
#include "furIcons.h"
#include <math.h>
//#define rWrite(a,v) pendingWrites[a]=v;
#define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} }
#define CHIP_DIVIDER 8
const char* regCheatSheetDave[]={
"Freq0", "00",
"Control0", "01",
"Freq1", "02",
"Control1", "03",
"Freq2", "04",
"Control2", "05",
"Control3", "06",
"SoundCtrl", "07",
"Vol0L", "08",
"Vol1L", "09",
"Vol2L", "0A",
"Vol3L", "0B",
"Vol0R", "0C",
"Vol1R", "0D",
"Vol2R", "0E",
"Vol3R", "0F",
"ClockDiv", "1F",
NULL
};
const unsigned char snapPeriodLong[15]={
0, 1, 3, 3, 3, 6, 6, 7, 7, 10, 10, 12, 12, 13, 13
};
const unsigned char snapPeriodShort[15]={
2, 2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11, 11, 11
};
const unsigned char waveMap[8]={
0, 1, 1, 2, 3, 0, 0, 0
};
const char** DivPlatformDave::getRegisterSheet() {
return regCheatSheetDave;
}
void DivPlatformDave::acquire(short** buf, size_t len) {
for (size_t h=0; h<len; h++) {
for (int i=4; i<6; i++) {
if (chan[i].dacSample!=-1) {
chan[i].dacPeriod+=chan[i].freq;
if (chan[i].dacPeriod>rate) {
DivSample* s=parent->getSample(chan[i].dacSample);
if (s->samples<=0) {
chan[i].dacSample=-1;
writeControl=true;
chan[0].writeVol=true;
continue;
}
signed char dacData=(s->data8[chan[i].dacPos]*chan[i].outVol)>>8;
chan[i].dacOut=dacData+32;
chan[i].dacPos++;
if (!isMuted[i]) {
rWrite(8+((i-4)<<2),chan[i].dacOut&0x3f);
}
if (s->isLoopable() && chan[i].dacPos>=(unsigned int)s->loopEnd) {
chan[i].dacPos=s->loopStart;
} else if (chan[i].dacPos>=s->samples) {
chan[i].dacSample=-1;
writeControl=true;
chan[0].writeVol=true;
}
chan[i].dacPeriod-=rate;
}
}
}
if (!writes.empty()) {
QueuedWrite w=writes.front();
dave->writePort(w.addr,w.val);
regPool[w.addr&0x1f]=w.val;
writes.pop();
}
unsigned int next=dave->runOneCycle();
unsigned short nextL=next&0xffff;
unsigned short nextR=next>>16;
buf[0][h]=(short)nextL;
buf[1][h]=(short)nextR;
}
}
void DivPlatformDave::tick(bool sysTick) {
for (int i=0; i<6; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=VOL_SCALE_LINEAR(chan[i].vol&63,MIN(63,chan[i].std.vol.val),63);
chan[i].writeVol=true;
}
if (chan[i].std.duty.had) {
chan[i].noiseFreq=chan[i].std.duty.val&3;
chan[i].freqChanged=true;
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
if (i>=4) {
chan[i].baseFreq=parent->calcBaseFreq(1,1,parent->calcArp(chan[i].note,chan[i].std.arp.val),false);
} else {
chan[i].baseFreq=NOTE_PERIODIC(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
}
chan[i].freqChanged=true;
}
if (chan[i].std.wave.had) {
chan[i].wave=chan[i].std.wave.val&7;
if (i==3 && chan[i].wave>3) chan[i].wave=3;
chan[i].freqChanged=true;
}
if (chan[i].std.panL.had) {
chan[i].panL=chan[i].std.panL.val&63;
}
if (chan[i].std.panR.had) {
chan[i].panR=chan[i].std.panR.val&63;
}
if (chan[i].std.panL.had || chan[i].std.panR.had) {
chan[i].writeVol=true;
}
if (chan[i].std.ex1.had) {
chan[i].highPass=chan[i].std.ex1.val&1;
chan[i].ringMod=chan[i].std.ex1.val&2;
chan[i].swapCounters=chan[i].std.ex1.val&4;
chan[i].lowPass=chan[i].std.ex1.val&8;
chan[i].freqChanged=true;
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.phaseReset.had && chan[i].std.phaseReset.val==1) {
if (i>=4) {
if (chan[i].active && chan[i].dacSample>=0 && chan[i].dacSample<parent->song.sampleLen) {
chan[i].dacPos=0;
chan[i].dacPeriod=0;
chan[i].keyOn=true;
}
} else {
chan[i].resetPhase=true;
writeControl=true;
}
}
if (chan[i].writeVol) {
if (i<4) {
if (chan[i].active && !isMuted[i]) {
if (i!=0 || chan[4].dacSample<0) {
rWrite(8+i,(63+chan[i].outVol*chan[i].panL)>>6);
}
if (i!=0 || chan[5].dacSample<0) {
rWrite(12+i,(63+chan[i].outVol*chan[i].panR)>>6);
}
} else {
if (i!=0 || chan[4].dacSample<0) {
rWrite(8+i,0);
}
if (i!=0 || chan[5].dacSample<0) {
rWrite(12+i,0);
}
}
}
chan[i].writeVol=false;
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
if (i>=4) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,0,chan[i].pitch2,1,1);
} else {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,true,0,chan[i].pitch2,chipClock,CHIP_DIVIDER);
}
if (i<3) {
switch (chan[i].wave) {
case 0:
chan[i].freq>>=2;
break;
case 1:
chan[i].freq/=5;
chan[i].freq>>=1;
break;
case 2:
chan[i].freq/=15;
chan[i].freq>>=1;
break;
case 3:
chan[i].freq/=63;
break;
case 4:
chan[i].freq>>=5;
break;
}
}
if (i<4) {
if (chan[i].freq<1) chan[i].freq=1;
if (chan[i].freq>4095) chan[i].freq=4095;
}
if (i<3) {
if (chan[i].wave==1) { // short 1
chan[i].freq=15*(chan[i].freq/15)+snapPeriodShort[(chan[i].freq%15)];
} else if (chan[i].wave==2) { // long 1
chan[i].freq=15*(chan[i].freq/15)+snapPeriodLong[(chan[i].freq%15)];
} else if (chan[i].wave==3) { // long 2 (30, 61, 92, 123... result in silence)
if ((chan[i].freq%30)==(chan[i].freq/30)-1) chan[i].freq++;
}
rWrite((i<<1),chan[i].freq&0xff);
rWrite(1+(i<<1),(chan[i].freq>>8)|((waveMap[chan[i].wave])<<4)|(chan[i].highPass?0x40:0)|(chan[i].ringMod?0x80:0));
} else if (i==3) {
rWrite(6,(chan[i].noiseFreq&3)|((chan[i].wave&3)<<2)|(chan[i].swapCounters?0x10:0)|(chan[i].lowPass?0x20:0)|(chan[i].highPass?0x40:0)|(chan[i].ringMod?0x80:0));
}
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
}
if (writeControl) {
rWrite(7,(chan[0].resetPhase?1:0)|(chan[1].resetPhase?2:0)|(chan[2].resetPhase?4:0)|((chan[4].dacSample>=0)?8:0)|((chan[5].dacSample>=0)?16:0));
rWrite(7,((chan[4].dacSample>=0)?8:0)|((chan[5].dacSample>=0)?16:0));
chan[0].resetPhase=false;
chan[1].resetPhase=false;
chan[2].resetPhase=false;
chan[3].resetPhase=false;
writeControl=false;
}
}
int DivPlatformDave::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=NULL;
// DAC
if (c.chan>=4) {
ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].dacSample=ins->amiga.getSample(c.value);
chan[c.chan].sampleNote=c.value;
c.value=ins->amiga.getFreq(c.value);
chan[c.chan].sampleNoteDelta=c.value-chan[c.chan].sampleNote;
} else if (chan[c.chan].sampleNote!=DIV_NOTE_NULL) {
chan[c.chan].dacSample=ins->amiga.getSample(chan[c.chan].sampleNote);
c.value=ins->amiga.getFreq(chan[c.chan].sampleNote);
}
if (chan[c.chan].dacSample<0 || chan[c.chan].dacSample>=parent->song.sampleLen) {
chan[c.chan].dacSample=-1;
chan[0].writeVol=true;
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=parent->calcBaseFreq(1,1,c.value,false);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].dacPos=0;
chan[c.chan].dacPeriod=0;
writeControl=true;
} else {
ins=parent->getIns(chan[c.chan].ins,DIV_INS_DAVE);
chan[c.chan].sampleNote=DIV_NOTE_NULL;
chan[c.chan].sampleNoteDelta=0;
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_PERIODIC(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].writeVol=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
chan[c.chan].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].writeVol=true;
if (c.chan>=4) {
chan[c.chan].dacSample=-1;
chan[0].writeVol=true;
writeControl=true;
}
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
chan[c.chan].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
if (chan[c.chan].active) {
chan[c.chan].writeVol=true;
}
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
chan[c.chan].wave=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_PERIODIC(c.value2+chan[c.chan].sampleNoteDelta);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_PANNING: {
chan[c.chan].panL=c.value>>2;
chan[c.chan].panR=c.value2>>2;
break;
}
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=NOTE_PERIODIC(c.value+chan[c.chan].sampleNoteDelta);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_DAVE));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_PERIODIC(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 31;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_MACRO_RESTART:
chan[c.chan].std.restart(c.value);
break;
default:
break;
}
return 1;
}
void DivPlatformDave::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
chan[ch].writeVol=true;
}
void DivPlatformDave::forceIns() {
for (int i=0; i<6; i++) {
chan[i].insChanged=true;
chan[i].freqChanged=true;
chan[i].writeVol=true;
}
writeControl=true;
}
void* DivPlatformDave::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformDave::getChanMacroInt(int ch) {
return &chan[ch].std;
}
unsigned short DivPlatformDave::getPan(int ch) {
return (chan[ch].panL<<2)|chan[ch].panR;
}
DivChannelPair DivPlatformDave::getPaired(int ch) {
return DivChannelPair();
}
DivChannelModeHints DivPlatformDave::getModeHints(int ch) {
DivChannelModeHints ret;
return ret;
}
DivSamplePos DivPlatformDave::getSamplePos(int ch) {
if (ch<4 || ch>=6) return DivSamplePos();
return DivSamplePos(
chan[ch].dacSample,
chan[ch].dacPos,
chan[ch].dacRate
);
}
DivDispatchOscBuffer* DivPlatformDave::getOscBuffer(int ch) {
return oscBuf[ch];
}
int DivPlatformDave::mapVelocity(int ch, float vel) {
return round(31.0*pow(vel,0.22));
}
unsigned char* DivPlatformDave::getRegisterPool() {
return regPool;
}
int DivPlatformDave::getRegisterPoolSize() {
return 32;
}
void DivPlatformDave::reset() {
writes.clear();
memset(regPool,0,32);
for (int i=0; i<6; i++) {
chan[i]=DivPlatformDave::Channel();
chan[i].std.setEngine(parent);
}
if (dumpWrites) {
addWrite(0xffffffff,0);
}
writeControl=false;
dave->reset(true);
}
int DivPlatformDave::getOutputCount() {
return 2;
}
bool DivPlatformDave::keyOffAffectsArp(int ch) {
return true;
}
void DivPlatformDave::notifyInsDeletion(void* ins) {
for (int i=0; i<6; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformDave::setFlags(const DivConfig& flags) {
chipClock=8000000.0;
CHECK_CUSTOM_CLOCK;
rate=chipClock/16;
for (int i=0; i<6; i++) {
oscBuf[i]->rate=rate;
}
}
void DivPlatformDave::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformDave::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformDave::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
dave=new Ep128::Dave;
for (int i=0; i<6; i++) {
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
setFlags(flags);
reset();
return 6;
}
void DivPlatformDave::quit() {
for (int i=0; i<6; i++) {
delete oscBuf[i];
}
delete dave;
}
DivPlatformDave::~DivPlatformDave() {
}

100
src/engine/platform/dave.h Normal file
View file

@ -0,0 +1,100 @@
/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2024 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef _DAVE_H
#define _DAVE_H
#include "../dispatch.h"
#include "../../fixedQueue.h"
#include "sound/dave/dave.hpp"
class DivPlatformDave: public DivDispatch {
struct Channel: public SharedChannel<signed char> {
int dacPeriod, dacRate, dacOut;
unsigned int dacPos;
int dacSample;
unsigned char noiseFreq;
unsigned char panL;
unsigned char panR;
unsigned char wave;
bool writeVol, highPass, ringMod, swapCounters, lowPass, resetPhase;
Channel():
SharedChannel<signed char>(63),
dacPeriod(0),
dacRate(0),
dacOut(0),
dacPos(0),
dacSample(-1),
noiseFreq(0),
panL(63),
panR(63),
wave(0),
writeVol(false),
highPass(false),
ringMod(false),
swapCounters(false),
lowPass(false),
resetPhase(false) {}
};
Channel chan[6];
DivDispatchOscBuffer* oscBuf[6];
bool isMuted[6];
struct QueuedWrite {
unsigned char addr;
unsigned char val;
QueuedWrite(): addr(0), val(9) {}
QueuedWrite(unsigned char a, unsigned char v): addr(a), val(v) {}
};
FixedQueue<QueuedWrite,512> writes;
bool writeControl;
Ep128::Dave* dave;
unsigned char regPool[32];
friend void putDispatchChip(void*,int);
friend void putDispatchChan(void*,int,int);
public:
void acquire(short** buf, size_t len);
int dispatch(DivCommand c);
void* getChanState(int chan);
DivMacroInt* getChanMacroInt(int ch);
unsigned short getPan(int chan);
DivChannelPair getPaired(int chan);
DivChannelModeHints getModeHints(int chan);
DivSamplePos getSamplePos(int ch);
DivDispatchOscBuffer* getOscBuffer(int chan);
int mapVelocity(int ch, float vel);
unsigned char* getRegisterPool();
int getRegisterPoolSize();
void reset();
void forceIns();
void tick(bool sysTick=true);
void muteChannel(int ch, bool mute);
int getOutputCount();
bool keyOffAffectsArp(int ch);
void setFlags(const DivConfig& flags);
void notifyInsDeletion(void* ins);
void poke(unsigned int addr, unsigned short val);
void poke(std::vector<DivRegWrite>& wlist);
const char** getRegisterSheet();
int init(DivEngine* parent, int channels, int sugRate, const DivConfig& flags);
void quit();
~DivPlatformDave();
};
#endif

View file

@ -0,0 +1,813 @@
// ep128emu -- portable Enterprise 128 emulator
// Copyright (C) 2003-2016 Istvan Varga <istvanv@users.sourceforge.net>
// https://github.com/istvan-v/ep128emu/
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "dave.hpp"
#include <cmath>
#define EP128EMU_UNLIKELY(x) x
// Generate polynomial counter of log2(m0) + 1 bits length, and store
// (m0 * 2 - 1) samples at 'tabptr' in reverse order.
// log2(m1) is the second bit to be used in the XOR operation when
// calculating the next bit of output.
static void calculate_polycnt(uint8_t *tabptr, uint32_t m0, uint32_t m1)
{
uint32_t sr = 0xFFFFFFFFU;
int n = int(m0 << 1) - 1;
while (--n >= 0) {
uint8_t b0 = uint8_t(bool(sr & m0));
uint8_t b1 = uint8_t(bool(sr & m1));
tabptr[n] = b0;
sr = (sr << 1) | uint32_t(b0 ^ b1);
}
}
namespace Ep128 {
DaveTables::DaveTables()
{
static const uint32_t polycnt_params[14] = {
0x00000008U, 0x00000004U, // 4-bit: poly = 11001
0x00000010U, 0x00000004U, // 5-bit: poly = 101001
0x00000040U, 0x00000020U, // 7-bit: poly = 11000001
0x00000100U, 0x00000010U, // 9-bit: poly = 1000100001
0x00000400U, 0x00000100U, // 11-bit: poly = 101000000001
0x00004000U, 0x00002000U, // 15-bit: poly = 1100000000000001
0x00010000U, 0x00002000U // 17-bit: poly = 100100000000000001
};
polycnt4_table = new uint8_t[15 + 31 + 127 + 511 + 2047 + 32767 + 131071];
polycnt5_table = &(polycnt4_table[15]);
polycnt7_table = &(polycnt5_table[31]);
polycnt9_table = &(polycnt7_table[127]);
polycnt11_table = &(polycnt9_table[511]);
polycnt15_table = &(polycnt11_table[2047]);
polycnt17_table = &(polycnt15_table[32767]);
uint8_t *bufp = polycnt4_table;
for (int i = 0; i < 14; i += 2) {
calculate_polycnt(bufp, polycnt_params[i], polycnt_params[i + 1]);
bufp = bufp + ((polycnt_params[i] << 1) - 1U);
}
}
DaveTables::~DaveTables()
{
delete[] polycnt4_table;
}
// handle timer interrupts
inline void Dave::triggerIntSnd()
{
// trigger interrupt on edge only
if (int_snd_active)
return;
// mark as active
int_snd_active = 1;
interruptRequest();
}
inline void Dave::triggerInt1Hz()
{
// trigger interrupt on edge only
if (int_1hz_active)
return;
// mark as active
int_1hz_active = 1;
interruptRequest();
}
// run DAVE emulation, and also trigger any sound or timer interrupts
uint32_t Dave::runOneCycle_()
{
// update polynomial counters
if (--polycnt4_phase < 0) // 4-bit
polycnt4_phase = 14;
polycnt4_state = (int) t.polycnt4_table[polycnt4_phase];
if (--polycnt5_phase < 0) // 5-bit
polycnt5_phase = 30;
polycnt5_state = (int) t.polycnt5_table[polycnt5_phase];
if (!noise_polycnt_is_7bit) {
// channel 3 uses the variable length polynomial counter
if (--polycnt7_phase < 0) // 7-bit
polycnt7_phase = 126;
polycnt7_state = (int) t.polycnt7_table[polycnt7_phase];
// channel 3 polynomial counter: updated on negative edge
if (*chn3_clk_source < chn3_clk_source_prv) {
if (--polycntVL_phase < 0) // variable length
polycntVL_phase = polycntVL_maxphase;
polycntVL_state = (int) polycntVL_table[polycntVL_phase];
chn3_state1 = polycntVL_state; // input signal to channel 3
if (!chn3_lp_2)
chn3_state2 = polycntVL_state;
}
chn3_clk_source_prv = *chn3_clk_source;
}
else {
// channel 3 uses the 7-bit polynomial counter
if (*chn3_clk_source < chn3_clk_source_prv) {
// update on negative edge
if (--polycnt7_phase < 0) // 7-bit
polycnt7_phase = 126;
polycnt7_state = (int) t.polycnt7_table[polycnt7_phase];
chn3_state1 = polycnt7_state; // input signal to channel 3
if (!chn3_lp_2)
chn3_state2 = polycnt7_state;
}
chn3_clk_source_prv = *chn3_clk_source;
if (--polycntVL_phase < 0) // variable length
polycntVL_phase = polycntVL_maxphase;
polycntVL_state = (int) polycntVL_table[polycntVL_phase];
}
// update the phase of all oscillators
clk_62500_phase--;
clk_1000_phase--;
chn0_phase -= chn0_run;
chn1_phase -= chn1_run;
chn2_phase -= chn2_run;
// reload phase counters if necessary
if (EP128EMU_UNLIKELY(clk_1000_phase < 0)) {
clk_50_phase--;
// trigger interrupts if enabled
if ((*int_snd_phase) < 0) {
// will reload counter later
int_snd_state = (int_snd_state & 1) ^ 1; // invert state
if (enable_int_snd)
triggerIntSnd();
}
clk_1000_phase = clk_1000_frq;
if (EP128EMU_UNLIKELY(clk_50_phase < 0)) {
clk_50_phase = clk_50_frq;
clk_1_phase--;
if (EP128EMU_UNLIKELY(clk_1_phase < 0)) {
clk_1_phase = clk_1_frq; // reload counter
int_1hz_state = (int_1hz_state & 1) ^ 1; // invert state
if (enable_int_1hz)
triggerInt1Hz();
}
}
}
else if (EP128EMU_UNLIKELY((*int_snd_phase) < 0)) {
// trigger interrupt if enabled
int_snd_state = (int_snd_state & 1) ^ 1; // invert state
if (enable_int_snd)
triggerIntSnd();
}
// calculate oscillator outputs
if (clk_62500_phase < 0) {
// simple 31250 Hz oscillator
clk_62500_phase = clk_62500_frq; // reload counter
clk_62500_state = (clk_62500_state & 1) ^ 1; // invert state
}
// ---- channel 3 ----
chn3_prv = chn3_state; // save previous output
if (chn3_lp_2 && (chn2_state < chn2_prv)) {
// lowpass filter holds signal until negative edge in channel 2
chn3_state2 = chn3_state1;
}
if (chn3_hp_0 && (chn0_state < chn0_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 0
chn3_state2 = 0;
}
// store final output signal in chn3_state
chn3_state = chn3_state2;
if (chn3_rm_1) {
// ring modulation: XNOR by channel 1
chn3_state ^= (chn1_state ^ 1);
}
// ---- channel 2 ----
chn2_prv = chn2_state; // save previous output
if (chn2_phase < 0) {
chn2_phase = chn2_frqcode; // reload counter
if (chn2_input_polycnt == NULL) {
// square wave
chn2_state1 = (chn2_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn2_state1 = *chn2_input_polycnt;
}
}
if (chn2_hp_3 && (chn3_state < chn3_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 3
chn2_state1 = 0;
}
// store final output signal in chn2_state
chn2_state = chn2_state1;
if (chn2_rm_0) {
// ring modulation: XNOR by channel 0
chn2_state ^= (chn0_state ^ 1);
}
// ---- channel 1 ----
chn1_prv = chn1_state; // save previous output
if (chn1_phase < 0) {
chn1_phase = chn1_frqcode; // reload counter
if (chn1_input_polycnt == NULL) {
// square wave
chn1_state1 = (chn1_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn1_state1 = *chn1_input_polycnt;
}
}
if (chn1_hp_2 && (chn2_state < chn2_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 2
chn1_state1 = 0;
}
// store final output signal in chn1_state
chn1_state = chn1_state1;
if (chn1_rm_3) {
// ring modulation: XNOR by channel 3
chn1_state ^= (chn3_state ^ 1);
}
// ---- channel 0 ----
chn0_prv = chn0_state; // save previous output
if (chn0_phase < 0) {
chn0_phase = chn0_frqcode; // reload counter
if (chn0_input_polycnt == NULL) {
// square wave
chn0_state1 = (chn0_state1 & 1) ^ 1;
}
else {
// get input from polynomial counter
chn0_state1 = *chn0_input_polycnt;
}
}
if (chn0_hp_1 && (chn1_state < chn1_prv)) {
// highpass filter: sets level to 0 on negative edge in channel 1
chn0_state1 = 0;
}
// store final output signal in chn0_state
chn0_state = chn0_state1;
if (chn0_rm_2) {
// ring modulation: XNOR by channel 2
chn0_state ^= (chn2_state ^ 1);
}
// and now the final DAC output (left/right) values
// total output range (not including tape feedback): 0 to 252
unsigned int lval =
((tape_feedback & tape_input) == 0 ? 0U : 0x3FU); // tape feedback
unsigned int rval = lval;
if (dac_mode_left) {
lval += (chn0_left << 2);
if (dac_mode_right) {
// simplest case: both channels in DAC mode
rval += (chn0_right << 2);
}
else {
// left channel is in DAC mode, but right is not
if (chn0_state)
rval += chn0_right;
if (chn1_state)
rval += chn1_right;
if (chn2_state)
rval += chn2_right;
if (chn3_state)
rval += chn3_right;
}
}
else if (dac_mode_right) {
// right channel is in DAC mode, but left is not
rval += (chn0_right << 2);
if (chn0_state)
lval += chn0_left;
if (chn1_state)
lval += chn1_left;
if (chn2_state)
lval += chn2_left;
if (chn3_state)
lval += chn3_left;
}
else {
// neither channel is in DAC mode
if (chn0_state) {
lval += chn0_left;
rval += chn0_right;
}
if (chn1_state) {
lval += chn1_left;
rval += chn1_right;
}
if (chn2_state) {
lval += chn2_left;
rval += chn2_right;
}
if (chn3_state) {
lval += chn3_left;
rval += chn3_right;
}
}
audioOutput = uint32_t(lval + (rval << 16)) << 7;
return audioOutput;
}
// returns pointer to the polynomial counter for channels 0, 1, and 2
// selected by 'n' (allowed values for 'n' are 0x00, 0x10, 0x20, and 0x30)
int * Dave::findPolycntForToneChannel(int n)
{
switch (n) {
case 0x10:
return (&polycnt4_state); // 4-bit
case 0x20:
return (&polycnt5_state); // 5-bit
case 0x30:
if (!noise_polycnt_is_7bit) {
return (&polycnt7_state); // 7-bit
}
else {
return (&polycntVL_state); // variable length
}
}
// default to square wave
return (int*) NULL;
}
// write to DAVE registers
void Dave::writePort(uint16_t addr, uint8_t value)
{
switch (uint8_t(addr & 0x1F)) {
case 0x00:
// channel 0 frequency
chn0_frqcode = (chn0_frqcode & 0x0F00) | (int) value;
break;
case 0x01:
// channel 0 frequency and mode
chn0_frqcode = (chn0_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn0_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn0_hp_1 = ((int) value & 0x40 ? 1 : 0); // highpass
chn0_rm_2 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x02:
// channel 1 frequency
chn1_frqcode = (chn1_frqcode & 0x0F00) | (int) value;
break;
case 0x03:
// channel 1 frequency and mode
chn1_frqcode = (chn1_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn1_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn1_hp_2 = ((int) value & 0x40 ? 1 : 0); // highpass
chn1_rm_3 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x04:
// channel 2 frequency
chn2_frqcode = (chn2_frqcode & 0x0F00) | (int) value;
break;
case 0x05:
// channel 2 frequency and mode
chn2_frqcode = (chn2_frqcode & 0x00FF) | (((int) value & 0x0F) << 8);
// select distortion mode
chn2_input_polycnt = findPolycntForToneChannel((int) value & 0x30);
chn2_hp_3 = ((int) value & 0x40 ? 1 : 0); // highpass
chn2_rm_0 = ((int) value & 0x80 ? 1 : 0); // ringmod
break;
case 0x06:
// channel 3 parameters
switch ((int) value & 0x03) {
// polynomial counter clock source
case 0x00: chn3_clk_source = &clk_62500_state; break;
case 0x01: chn3_clk_source = &chn0_state; break;
case 0x02: chn3_clk_source = &chn1_state; break;
case 0x03: chn3_clk_source = &chn2_state; break;
}
// select variable length polynomial counter
switch ((int) value & 0x0C) {
case 0x00:
polycntVL_table = t.polycnt17_table; // 17-bit
polycntVL_maxphase = 131070;
break;
case 0x04:
polycntVL_table = t.polycnt15_table; // 15-bit
polycntVL_maxphase = 32766;
break;
case 0x08:
polycntVL_table = t.polycnt11_table; // 11-bit
polycntVL_maxphase = 2046;
break;
case 0x0C:
polycntVL_table = t.polycnt9_table; // 9-bit
polycntVL_maxphase = 510;
break;
}
// wrap the phase of variable length polynomial counter to table length
polycntVL_phase = polycntVL_phase % (polycntVL_maxphase + 1);
// bit 4: swap 7-bit and variable length polynomial counters if set
if ((int) value & 0x10) {
noise_polycnt_is_7bit = 1;
chn3_input_polycnt = &polycnt7_state;
if (chn0_input_polycnt == &polycnt7_state)
chn0_input_polycnt = &polycntVL_state;
if (chn1_input_polycnt == &polycnt7_state)
chn1_input_polycnt = &polycntVL_state;
if (chn2_input_polycnt == &polycnt7_state)
chn2_input_polycnt = &polycntVL_state;
}
else {
noise_polycnt_is_7bit = 0;
chn3_input_polycnt = &polycntVL_state;
if (chn0_input_polycnt == &polycntVL_state)
chn0_input_polycnt = &polycnt7_state;
if (chn1_input_polycnt == &polycntVL_state)
chn1_input_polycnt = &polycnt7_state;
if (chn2_input_polycnt == &polycntVL_state)
chn2_input_polycnt = &polycnt7_state;
}
chn3_lp_2 = ((int) value & 0x20 ? 1 : 0); // lowpass with channel 2
chn3_hp_0 = ((int) value & 0x40 ? 1 : 0); // highpass with channel 0
chn3_rm_1 = ((int) value & 0x80 ? 1 : 0); // ring mod. with channel 1
break;
case 0x07:
// sound/interrupt control register
if ((int) value & 0x01) {
chn0_run = 0; // channel 0 sync
chn0_state1 = 0;
}
else if (!chn0_run) {
chn0_phase = chn0_frqcode; // reset phase
chn0_run = 1;
}
if ((int) value & 0x02) {
chn1_run = 0; // channel 1 sync
chn1_state1 = 0;
}
else if (!chn1_run) {
chn1_phase = chn1_frqcode; // reset phase
chn1_run = 1;
}
if ((int) value & 0x04) {
chn2_run = 0; // channel 2 sync
chn2_state1 = 0;
}
else if (!chn2_run) {
chn2_phase = chn2_frqcode; // reset phase
chn2_run = 1;
}
dac_mode_left = ((int) value & 0x08 ? 1 : 0); // analogue mode
dac_mode_right = ((int) value & 0x10 ? 1 : 0);
switch ((int) value & 0x60) {
// sound interrupt mode
case 0x00:
int_snd_phase = &clk_1000_phase;
break;
case 0x20:
int_snd_phase = &clk_50_phase;
break;
case 0x40:
int_snd_phase = &chn0_phase;
break;
case 0x60:
int_snd_phase = &chn1_phase;
break;
}
break;
case 0x08:
// channel 0 left volume
chn0_left = int(value & 0x3F);
break;
case 0x09:
// channel 1 left volume
chn1_left = int(value & 0x3F);
break;
case 0x0A:
// channel 2 left volume
chn2_left = int(value & 0x3F);
break;
case 0x0B:
// channel 3 left volume
chn3_left = int(value & 0x3F);
break;
case 0x0C:
// channel 0 right volume
chn0_right = int(value & 0x3F);
break;
case 0x0D:
// channel 1 right volume
chn1_right = int(value & 0x3F);
break;
case 0x0E:
// channel 2 right volume
chn2_right = int(value & 0x3F);
break;
case 0x0F:
// channel 3 right volume
chn3_right = int(value & 0x3F);
break;
case 0x10:
// memory page 0
page0Segment = value;
setMemoryPage(0, value);
break;
case 0x11:
// memory page 1
page1Segment = value;
setMemoryPage(1, value);
break;
case 0x12:
// memory page 2
page2Segment = value;
setMemoryPage(2, value);
break;
case 0x13:
// memory page 3
page3Segment = value;
setMemoryPage(3, value);
break;
case 0x14:
// interrupt control register
{
int prv = (int_snd_active | int_1hz_active
| int_1_active | int_2_active);
uint8_t tmp = (uint8_t) value ^ (uint8_t) 0x55;
// sound/timer interrupt
enable_int_snd = (tmp & (uint8_t) 0x01 ? 0 : 1);
if (tmp & (uint8_t) 0x03)
int_snd_active = 0;
// 1 Hz interrupt
enable_int_1hz = (tmp & (uint8_t) 0x04 ? 0 : 1);
if (tmp & (uint8_t) 0x0C)
int_1hz_active = 0;
// INT 1 (video interrupt)
enable_int_1 = (tmp & (uint8_t) 0x10 ? 0 : 1);
if (tmp & (uint8_t) 0x30)
int_1_active = 0;
// INT 2
enable_int_2 = (tmp & (uint8_t) 0x40 ? 0 : 1);
if (tmp & (uint8_t) 0xC0)
int_2_active = 0;
if (prv && !(int_snd_active | int_1hz_active
| int_1_active | int_2_active)) {
// no more active interrupts: clear request to CPU
clearInterruptRequest();
}
}
break;
case 0x15:
// select keyboard row
keyboardRow = int(value & 0x0F);
tape_feedback = int(!(value & 0x20)); // tape control
setRemote1State(value & 0x40 ? 1 : 0);
setRemote2State(value & 0x80 ? 1 : 0);
break;
case 0x1F: // system configuration register
{
// CPU wait cycle control
setMemoryWaitMode(int(value & 0x0C) >> 2);
// input clock frequency (note: the frequency is always 8 MHz,
// this bit sets the assumed value)
// 0: 8 MHz, dave_clock_freq = input_freq / 32
// 1: 12 MHz, dave_clock_freq = input_freq / 48
clockDiv = ((value & 0x02) == 0 ? 2 : 3);
}
break;
}
}
// read from DAVE registers
uint8_t Dave::readPort(uint16_t addr) const
{
switch (uint8_t(addr & 0x1F)) {
case 0x10:
return page0Segment;
case 0x11:
return page1Segment;
case 0x12:
return page2Segment;
case 0x13:
return page3Segment;
case 0x14:
{
// interrupt state
return uint8_t((int_snd_state | (int_snd_active << 1))
| ((int_1hz_state | (int_1hz_active << 1)) << 2)
| ((int_1_state | (int_1_active << 1)) << 4)
| ((int_2_state | (int_2_active << 1)) << 6));
}
break;
case 0x15:
// read currently selected keyboard row
return (keyboardRow < 10 ? keyboardState[keyboardRow] : 0xFF);
case 0x16:
{
// tape input
uint8_t n =
uint8_t(((tape_input_level - 1) & 0x40) | ((tape_input - 1) & 0x80)
| 0x0F);
if (keyboardRow < 5) {
if (keyboardRow == 0) {
// EnterMice buttons (left and right)
n &= uint8_t(0xF9 | (mouseInput >> 3));
// EXT1 joystick fire buttons
n &= uint8_t(0xF8 | (keyboardState[14] >> 4));
}
else {
if (!(mouseInput & 0x80)) // EnterMice data input on column K
n &= uint8_t(0xFD | ((mouseInput << 1) >> (keyboardRow - 1)));
// EXT1 joystick (mapped to row 14)
n &= uint8_t(0xFE | (keyboardState[14] >> (4 - keyboardRow)));
}
}
else if (keyboardRow < 10) {
// external joystick 2 (mapped to keyboard row 15)
if (keyboardRow == 5) // fire buttons
n &= uint8_t(0xF8 | (keyboardState[15] >> 4));
else
n &= uint8_t(0xFE | (keyboardState[15] >> (9 - keyboardRow)));
}
return n;
}
}
// anything else is either handled elsewhere, or is write-only
return 0xFF;
}
// set hardware interrupt 1 state, and (possibly) trigger interrupt
void Dave::setInt1State(int new_state)
{
int prv = int_1_state;
// set new state
int_1_state = (new_state ? 1 : 0);
// on negative edge, trigger CPU interrupt
// (assuming it is enabled, and not active already)
if (!enable_int_1)
return; // disabled
if (int_1_state || !prv)
return; // not on negative edge
if (int_1_active)
return; // already active
// now active
int_1_active = 1;
// send request to CPU
interruptRequest();
}
// set hardware interrupt 2 state, and (possibly) trigger interrupt
void Dave::setInt2State(int new_state)
{
int prv = int_2_state;
// set new state
int_2_state = (new_state ? 1 : 0);
// on negative edge, trigger CPU interrupt
// (assuming it is enabled, and not active already)
if (!enable_int_2)
return; // disabled
if (int_2_state || !prv)
return; // not on negative edge
if (int_2_active)
return; // already active
// now active
int_2_active = 1;
// send request to CPU
interruptRequest();
}
Dave::Dave()
{
clockDiv = 2;
clockCnt = 1;
polycnt4_state = 0;
polycnt5_state = 0;
polycnt7_state = 0;
polycntVL_state = 0;
clk_62500_state = 0;
chn0_state = 0;
chn0_prv = 0;
chn0_state1 = 0;
chn0_frqcode = 0;
chn0_run = 1;
chn1_state = 0;
chn1_prv = 0;
chn1_state1 = 0;
chn1_frqcode = 0;
chn1_run = 1;
chn2_state = 0;
chn2_prv = 0;
chn2_state1 = 0;
chn2_frqcode = 0;
chn2_run = 1;
chn3_state = 0;
chn3_prv = 0;
chn3_state1 = 0;
chn3_state2 = 0;
chn3_clk_source_prv = 0;
int_snd_state = 0;
int_1hz_state = 0;
int_1_state = 1;
int_2_state = 1;
int_snd_active = 0;
int_1hz_active = 0;
int_1_active = 0;
int_2_active = 0;
audioOutput = 0;
tape_input = 0;
tape_input_level = 0;
this->reset(true);
}
Dave::~Dave()
{
}
void Dave::reset(bool isColdReset)
{
polycnt4_phase = 0;
polycnt5_phase = 0;
polycnt7_phase = 0;
polycntVL_phase = 0;
chn0_phase = 0;
chn1_phase = 0;
chn2_phase = 0;
clk_62500_phase = 0;
clk_1000_phase = 0;
clk_50_phase = 0;
clk_1_phase = 0;
// initialize registers
// this will also reset many variables to the default value
for (uint16_t i = 0x00; i < 0x20; i++)
writePort(i, 0);
// clear all interrupts
writePort(0x14, 0xAA);
if (isColdReset) {
// reset keyboard state
for (int i = 0; i < 16; i++)
keyboardState[i] = 0xFF;
}
mouseInput = 0xFF;
}
void Dave::setTapeInput(int state, int level)
{
tape_input = (state ? 1 : 0);
tape_input_level = (level > 0 ? 1 : 0);
}
void Dave::setKeyboardState(int keyCode, int state)
{
int row = (keyCode & 0x78) >> 3;
uint8_t mask = uint8_t(1 << (keyCode & 0x07));
if (!state)
keyboardState[row] |= mask;
else
keyboardState[row] &= (~mask);
}
// --------------------------------------------------------------------------
void Dave::setMemoryPage(uint8_t page, uint8_t segment)
{
(void) page;
(void) segment;
}
void Dave::setMemoryWaitMode(int mode)
{
(void) mode;
}
void Dave::setRemote1State(int state)
{
(void) state;
}
void Dave::setRemote2State(int state)
{
(void) state;
}
void Dave::interruptRequest()
{
}
void Dave::clearInterruptRequest()
{
}
} // namespace Ep128

View file

@ -0,0 +1,251 @@
// ep128emu -- portable Enterprise 128 emulator
// Copyright (C) 2003-2016 Istvan Varga <istvanv@users.sourceforge.net>
// https://github.com/istvan-v/ep128emu/
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#ifndef EP128EMU_DAVE_HPP
#define EP128EMU_DAVE_HPP
#include <stdint.h>
namespace Ep128 {
class DaveTables {
public:
// tables for polynomial counters
// (note: the table data is stored in reverse order)
uint8_t *polycnt4_table; // length = 15, poly = 0x0000000C
uint8_t *polycnt5_table; // length = 31, poly = 0x00000014
uint8_t *polycnt7_table; // length = 127, poly = 0x00000060
uint8_t *polycnt9_table; // length = 511, poly = 0x00000110
uint8_t *polycnt11_table; // length = 2047, poly = 0x00000500
uint8_t *polycnt15_table; // length = 32767, poly = 0x00006000
uint8_t *polycnt17_table; // length = 131071, poly = 0x00012000
// ----------------
DaveTables();
~DaveTables();
};
class Dave {
private:
DaveTables t;
int clockDiv; // 2 if bit 1 of port 0xBF is 0, 3 otherwise
int clockCnt; // counts from 'clockDiv' towards zero
// variable length counter uses one of the 9, 11, 15, and 17 bit tables
uint8_t *polycntVL_table;
// polynomial counters
int polycnt4_phase; // 4-bit counter phase (14 -> 0)
int polycnt5_phase; // 5-bit counter phase (30 -> 0)
int polycnt7_phase; // 7-bit counter phase (126 -> 0)
int polycntVL_phase; // variable length counter phase ...
int polycntVL_maxphase; // ... counts from this value to zero
int polycnt4_state; // 4-bit counter output
int polycnt5_state; // 5-bit counter output
int polycnt7_state; // 7-bit counter output
int polycntVL_state; // variable length counter output
// fixed frequency counters (f = 250000 / (n + 1))
static const int clk_62500_frq = 3;
static const int clk_1000_frq = 249;
static const int clk_50_frq = 19; // clocked by the 1 kHz counter
static const int clk_1_frq = 49; // clocked by the 50 Hz counter
int clk_62500_phase;
int clk_1000_phase;
int clk_50_phase;
int clk_1_phase;
int clk_62500_state;
// channel 0 parameters
int chn0_state; // current output state
int chn0_prv; // previous output state
int chn0_state1; // oscillator output
int chn0_phase; // phase (frqcode -> 0)
int chn0_frqcode; // frequency code (0 - 4095)
int *chn0_input_polycnt; // polynomial counter
int chn0_hp_1; // enable highpass filter
int chn0_rm_2; // enable ring modulation
int chn0_run; // 1: oscillator is running
int chn0_left; // left volume (0 - 63)
int chn0_right; // right volume (0 - 63)
// channel 1 parameters
int chn1_state; // current output state
int chn1_prv; // previous output state
int chn1_state1; // oscillator output
int chn1_phase; // phase (frqcode -> 0)
int chn1_frqcode; // frequency code (0 - 4095)
int *chn1_input_polycnt; // polynomial counter
int chn1_hp_2; // enable highpass filter
int chn1_rm_3; // enable ring modulation
int chn1_run; // 1: oscillator is running
int chn1_left; // left volume (0 - 63)
int chn1_right; // right volume (0 - 63)
// channel 2 parameters
int chn2_state; // current output state
int chn2_prv; // previous output state
int chn2_state1; // oscillator output
int chn2_phase; // phase (frqcode -> 0)
int chn2_frqcode; // frequency code (0 - 4095)
int *chn2_input_polycnt; // polynomial counter
int chn2_hp_3; // enable highpass filter
int chn2_rm_0; // enable ring modulation
int chn2_run; // 1: oscillator is running
int chn2_left; // left volume (0 - 63)
int chn2_right; // right volume (0 - 63)
// channel 3 (noise) parameters
int chn3_state; // current output state
int chn3_prv; // previous output state
int chn3_state1; // polynomial counter output
int chn3_state2; // lowpass filter output
int *chn3_clk_source; // clock input signal
int chn3_clk_source_prv; // previous clock input
int noise_polycnt_is_7bit; // 0xA6 port bit 4
int *chn3_input_polycnt; // polynomial counter
int chn3_lp_2; // enable lowpass filter
int chn3_hp_0; // enable highpass filter
int chn3_rm_1; // enable ring modulation
int chn3_left; // left volume (0 - 63)
int chn3_right; // right volume (0 - 63)
// enable DAC mode for left/right channel
int dac_mode_left;
int dac_mode_right;
// interrupts
int *int_snd_phase;
int enable_int_snd;
int enable_int_1hz;
int enable_int_1;
int enable_int_2;
int int_snd_state;
int int_1hz_state;
int int_1_state;
int int_2_state;
int int_snd_active;
int int_1hz_active;
int int_1_active;
int int_2_active;
uint32_t audioOutput;
uint8_t page0Segment;
uint8_t page1Segment;
uint8_t page2Segment;
uint8_t page3Segment;
int tape_feedback;
int tape_input;
int tape_input_level;
int keyboardRow;
uint8_t keyboardState[16];
// b0..b3 = current nibble
// b4 = button 1 (left) state (0 = pressed)
// b5 = button 2 (right) state
uint8_t mouseInput; // b7 == 1: mouse data bits inactive
// ----------------
inline void triggerIntSnd();
inline void triggerInt1Hz();
int * findPolycntForToneChannel(int n);
uint32_t runOneCycle_();
public:
Dave();
virtual ~Dave();
protected:
virtual void setMemoryPage(uint8_t page, uint8_t segment);
virtual void setMemoryWaitMode(int mode);
virtual void setRemote1State(int state);
virtual void setRemote2State(int state);
virtual void interruptRequest();
virtual void clearInterruptRequest();
public:
/*!
* Run DAVE emulation for 2 us (clock frequency = 500 kHz).
* Return value is audio output in left_channel + (right_channel << 16)
* format, where the range for a single channel is 0 to 40320 (sum of 4
* sound generators and tape feedback, 0 to 8064 each).
*/
inline uint32_t runOneCycle()
{
if (--clockCnt > 0)
return audioOutput;
clockCnt = clockDiv;
return runOneCycle_();
}
/*!
* Write to a DAVE register.
*/
void writePort(uint16_t addr, uint8_t value);
/*!
* Read from a DAVE register.
*/
uint8_t readPort(uint16_t addr) const;
/*!
* Set hardware interrupt 1 state, and (possibly) trigger interrupt.
*/
void setInt1State(int new_state);
/*!
* Set hardware interrupt 2 state, and (possibly) trigger interrupt.
*/
void setInt2State(int new_state);
/*!
* Set tape input state, and level (0: low, 1: high).
*/
void setTapeInput(int state, int level);
/*!
* Set state of key 'keyCode' (0 to 127, see table below) to pressed
* (state != 0) or released (state == 0).
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x00 | 0x01 | 0x02 | 0x03 | 0x04 | 0x05 | 0x06 | 0x07 |
* | 0x08 | 0x09 | 0x0A | 0x0B | 0x0C | 0x0D | 0x0E | 0x0F |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x00 | N | \ | B | C | V | X | Z | SHF_L |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x08 | H | LOCK | G | D | F | S | A | CTRL |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x10 | U | Q | Y | R | T | E | W | TAB |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x18 | 7 | 1 | 6 | 4 | 5 | 3 | 2 | ESC |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x20 | F4 | F8 | F3 | F6 | F5 | F7 | F2 | F1 |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x28 | 8 | | 9 | - | 0 | ^ | ERASE | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x30 | J | | K | ; | L | : | ] | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x38 | STOP | DOWN | RIGHT | UP | HOLD | LEFT | ENTER | ALT |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x40 | M | DEL | , | / | . | SHF_R | SPACE | INS |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x48 | I | | O | @ | P | [ | | |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x70 | JOY1R | JOY1L | JOY1D | JOY1U | JOY1F | JOY1F2| JOY1F3| |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
* | 0x78 | JOY2R | JOY2L | JOY2D | JOY2U | JOY2F | JOY2F2| JOY2F3| |
* +------+-------+-------+-------+-------+-------+-------+-------+-------+
*/
void setKeyboardState(int keyCode, int state);
inline void setMouseInput(uint8_t value)
{
mouseInput = value;
}
inline void clearMouseInput()
{
// clear data bits, but not the buttons
mouseInput = mouseInput | 0xCF;
}
/*!
* Reset DAVE.
*/
void reset(bool isColdReset = false);
};
} // namespace Ep128
#endif // EP128EMU_DAVE_HPP

View file

@ -134,6 +134,7 @@ enum DivSystem {
DIV_SYSTEM_C219,
DIV_SYSTEM_ESFM,
DIV_SYSTEM_POWERNOISE,
DIV_SYSTEM_DAVE,
};
enum DivEffectType: unsigned short {

View file

@ -2002,6 +2002,21 @@ void DivEngine::registerSystems() {
{}
);
sysDefs[DIV_SYSTEM_DAVE]=new DivSysDef(
"Dave", NULL, 0xd5, 0, 6, false, true, 0, false, 1U<<DIV_SAMPLE_DEPTH_8BIT, 0, 0,
"this chip was featured in the Enterprise 128 computer. it is similar to POKEY, but with stereo output.",
{"Channel 1", "Channel 2", "Channel 3", "Noise", "DAC Left", "DAC Right"},
{"CH1", "CH2", "CH3", "NO", "L", "R"},
{DIV_CH_WAVE, DIV_CH_WAVE, DIV_CH_WAVE, DIV_CH_NOISE, DIV_CH_PCM, DIV_CH_PCM},
{DIV_INS_DAVE, DIV_INS_DAVE, DIV_INS_DAVE, DIV_INS_DAVE, DIV_INS_AMIGA, DIV_INS_AMIGA},
{},
{
{0x10, {DIV_CMD_WAVE, "10xx: Set waveform (0 to 7)"}},
{0x11, {DIV_CMD_STD_NOISE_MODE, "11xx: Set AUDCTL"}},
{0x12, {DIV_CMD_STD_NOISE_FREQ, "12xx: Toggle two-tone mode"}},
}
);
sysDefs[DIV_SYSTEM_DUMMY]=new DivSysDef(
"Dummy System", NULL, 0xfd, 0, 8, false, true, 0, false, 0, 0, 0,
"this is a system designed for testing purposes.",

View file

@ -294,6 +294,7 @@ enum FurnaceGUIColors {
GUI_COLOR_INSTR_ESFM,
GUI_COLOR_INSTR_POWERNOISE,
GUI_COLOR_INSTR_POWERNOISE_SLOPE,
GUI_COLOR_INSTR_DAVE,
GUI_COLOR_INSTR_UNKNOWN,
GUI_COLOR_CHANNEL_BG,

View file

@ -178,6 +178,7 @@ const char* insTypes[DIV_INS_MAX+1][3]={
{"FM (ESFM)",ICON_FA_AREA_CHART,ICON_FUR_INS_ESFM},
{"PowerNoise (noise)",ICON_FUR_NOISE,ICON_FUR_INS_POWERNOISE},
{"PowerNoise (slope)",ICON_FUR_SAW,ICON_FUR_INS_POWERNOISE_SAW},
{"Dave",ICON_FA_BAR_CHART,ICON_FUR_INS_DAVE},
{NULL,ICON_FA_QUESTION,ICON_FA_QUESTION}
};
@ -991,6 +992,7 @@ const FurnaceGUIColorDef guiColors[GUI_COLOR_MAX]={
D(GUI_COLOR_INSTR_ESFM,"",ImVec4(0.1f,0.9f,1.0f,1.0f)),
D(GUI_COLOR_INSTR_POWERNOISE,"",ImVec4(1.0f,1.0f,0.8f,1.0f)),
D(GUI_COLOR_INSTR_POWERNOISE_SLOPE,"",ImVec4(1.0f,0.6f,0.3f,1.0f)),
D(GUI_COLOR_INSTR_DAVE,"",ImVec4(0.7f,0.7f,0.8f,1.0f)),
D(GUI_COLOR_INSTR_UNKNOWN,"",ImVec4(0.3f,0.3f,0.3f,1.0f)),
D(GUI_COLOR_CHANNEL_BG,"",ImVec4(0.4f,0.6f,0.8f,1.0f)),
@ -1209,6 +1211,7 @@ const int availableSystems[]={
DIV_SYSTEM_ESFM,
DIV_SYSTEM_PONG,
DIV_SYSTEM_POWERNOISE,
DIV_SYSTEM_DAVE,
0 // don't remove this last one!
};
@ -1299,6 +1302,7 @@ const int chipsSpecial[]={
DIV_SYSTEM_MMC5,
DIV_SYSTEM_SM8521,
DIV_SYSTEM_POWERNOISE,
DIV_SYSTEM_DAVE,
0 // don't remove this last one!
};
@ -1343,9 +1347,3 @@ const char* chipCategoryNames[]={
"Sample",
NULL
};
// NORMAL, LETTER,
const char* insIcons[]={
ICON_FA_AREA_CHART,
};

View file

@ -336,6 +336,10 @@ const char* powerNoiseSlopeControlBits[7]={
"invert B", "invert A", "reset B", "reset A", "clip B", "clip A", NULL
};
const char* daveControlBits[5]={
"high pass", "ring mod", "swap counters (noise)", "low pass (noise)", NULL
};
const char* panBits[5]={
"right", "left", "rear right", "rear left", NULL
};
@ -6726,7 +6730,7 @@ void FurnaceGUI::drawInsEdit() {
if (ins->type==DIV_INS_PCE || ins->type==DIV_INS_AY8930 || ins->type==DIV_INS_SM8521) {
volMax=31;
}
if (ins->type==DIV_INS_OPL || ins->type==DIV_INS_OPL_DRUMS || ins->type==DIV_INS_VERA || ins->type==DIV_INS_VRC6_SAW || ins->type==DIV_INS_ESFM) {
if (ins->type==DIV_INS_OPL || ins->type==DIV_INS_OPL_DRUMS || ins->type==DIV_INS_VERA || ins->type==DIV_INS_VRC6_SAW || ins->type==DIV_INS_ESFM || ins->type==DIV_INS_DAVE) {
volMax=63;
}
if (ins->type==DIV_INS_AMIGA) {
@ -6916,6 +6920,10 @@ void FurnaceGUI::drawInsEdit() {
if (ins->type==DIV_INS_POWERNOISE_SLOPE) {
dutyMax=0;
}
if (ins->type==DIV_INS_DAVE) {
dutyLabel="Noise Freq";
dutyMax=3;
}
const char* waveLabel="Waveform";
int waveMax=(ins->type==DIV_INS_VERA)?3:(MAX(1,e->song.waveLen-1));
@ -6953,6 +6961,7 @@ void FurnaceGUI::drawInsEdit() {
if (ins->type==DIV_INS_POWERNOISE) waveMax=0;
if (ins->type==DIV_INS_POWERNOISE_SLOPE) waveMax=0;
if (ins->type==DIV_INS_SU || ins->type==DIV_INS_POKEY) waveMax=7;
if (ins->type==DIV_INS_DAVE) waveMax=4;
if (ins->type==DIV_INS_PET) {
waveMax=8;
waveBitMode=true;
@ -7019,12 +7028,15 @@ void FurnaceGUI::drawInsEdit() {
ex1Max=5;
ex2Max=11;
}
if (ins->type==DIV_INS_DAVE) {
ex1Max=4;
}
int panMin=0;
int panMax=0;
bool panSingle=false;
bool panSingleNoBit=false;
if (ins->type==DIV_INS_STD ||//Game Gear
if (ins->type==DIV_INS_STD || // Game Gear
ins->type==DIV_INS_FM ||
ins->type==DIV_INS_OPM ||
ins->type==DIV_INS_GB ||
@ -7096,6 +7108,9 @@ void FurnaceGUI::drawInsEdit() {
if (ins->type==DIV_INS_POWERNOISE_SLOPE) {
panMax=15;
}
if (ins->type==DIV_INS_DAVE) {
panMax=63;
}
if (volMax>0) {
macroList.push_back(FurnaceGUIMacroDesc(volumeLabel,&ins->std.volMacro,volMin,volMax,160,uiColors[GUI_COLOR_MACRO_VOLUME]));
@ -7185,7 +7200,8 @@ void FurnaceGUI::drawInsEdit() {
ins->type==DIV_INS_TED ||
ins->type==DIV_INS_ESFM ||
ins->type==DIV_INS_POWERNOISE ||
ins->type==DIV_INS_POWERNOISE_SLOPE) {
ins->type==DIV_INS_POWERNOISE_SLOPE ||
ins->type==DIV_INS_DAVE) {
macroList.push_back(FurnaceGUIMacroDesc("Phase Reset",&ins->std.phaseResetMacro,0,1,32,uiColors[GUI_COLOR_MACRO_OTHER],false,NULL,NULL,true));
}
if (ex1Max>0) {
@ -7219,6 +7235,8 @@ void FurnaceGUI::drawInsEdit() {
macroList.push_back(FurnaceGUIMacroDesc("Special",&ins->std.ex1Macro,0,ex1Max,96,uiColors[GUI_COLOR_MACRO_OTHER],false,NULL,NULL,true,snesModeBits));
} else if (ins->type==DIV_INS_MSM5232) {
macroList.push_back(FurnaceGUIMacroDesc("Group Attack",&ins->std.ex1Macro,0,ex1Max,96,uiColors[GUI_COLOR_MACRO_OTHER]));
} else if (ins->type==DIV_INS_DAVE) {
macroList.push_back(FurnaceGUIMacroDesc("Control",&ins->std.ex1Macro,0,ex1Max,64,uiColors[GUI_COLOR_MACRO_OTHER],false,NULL,NULL,true,daveControlBits));
} else {
macroList.push_back(FurnaceGUIMacroDesc("Duty",&ins->std.ex1Macro,0,ex1Max,160,uiColors[GUI_COLOR_MACRO_OTHER]));
}

View file

@ -952,6 +952,12 @@ void FurnaceGUI::initSystemPresets() {
CH(DIV_SYSTEM_SAA1099, 1.0f, 0, "")
}
);
ENTRY(
"Enterprise 128", {
CH(DIV_SYSTEM_DAVE, 1.0f, 0, "")
},
"tickRate=50"
);
ENTRY(
"BBC Micro", {
CH(DIV_SYSTEM_SMS, 1.0f, 0,
@ -2861,6 +2867,12 @@ void FurnaceGUI::initSystemPresets() {
CH(DIV_SYSTEM_POWERNOISE, 1.0f, 0, "")
}
);
ENTRY(
"Dave", {
CH(DIV_SYSTEM_DAVE, 1.0f, 0, "")
},
"tickRate=50"
);
CATEGORY_END;
CATEGORY_BEGIN("DefleMask-compatible","these configurations are compatible with DefleMask.\nselect this if you need to save as .dmf or work with that program.");

View file

@ -1,7 +1,7 @@
// not auto-generated. update every time you change icons.ttf!
#define ICON_MIN_FUR 0xe0f0
#define ICON_MAX_FUR 0xe15b
#define ICON_MAX_FUR 0xe15c
// test
#define ICON_FUR_TEST0 u8"\ue0f0"
@ -69,6 +69,7 @@
#define ICON_FUR_INS_ESFM u8"\ue143"
#define ICON_FUR_INS_POWERNOISE u8"\ue15a"
#define ICON_FUR_INS_POWERNOISE_SAW u8"\ue15b"
#define ICON_FUR_INS_DAVE u8"\ue15c"
// sample editor
#define ICON_FUR_SAMPLE_APPLY_SILENCE u8"\ue136"