mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-22 08:20:24 +00:00
425 lines
10 KiB
C
425 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:47:12 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 82 FP additions, 36 FP multiplications,
|
||
|
* (or, 60 additions, 14 multiplications, 22 fused multiply/add),
|
||
|
* 41 stack variables, 1 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
|
||
|
E Tl, T1p, T1g, TM, T1k, TE, TP, T1f, T7, Te, TU, TH, T1l, Tw, T1q;
|
||
|
E T1c, T1y;
|
||
|
{
|
||
|
E T3, TA, Tk, TN, T6, Th, TD, TO, Ta, Tm, Tp, TK, Td, Tr, Tu;
|
||
|
E TL, TF, TG;
|
||
|
{
|
||
|
E T1, T2, Ti, Tj;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 3)];
|
||
|
T3 = T1 + T2;
|
||
|
TA = T1 - T2;
|
||
|
Ti = Ip[0];
|
||
|
Tj = Im[WS(rs, 3)];
|
||
|
Tk = Ti + Tj;
|
||
|
TN = Ti - Tj;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, TB, TC;
|
||
|
T4 = Rp[WS(rs, 2)];
|
||
|
T5 = Rm[WS(rs, 1)];
|
||
|
T6 = T4 + T5;
|
||
|
Th = T4 - T5;
|
||
|
TB = Ip[WS(rs, 2)];
|
||
|
TC = Im[WS(rs, 1)];
|
||
|
TD = TB + TC;
|
||
|
TO = TB - TC;
|
||
|
}
|
||
|
{
|
||
|
E T8, T9, Tn, To;
|
||
|
T8 = Rp[WS(rs, 1)];
|
||
|
T9 = Rm[WS(rs, 2)];
|
||
|
Ta = T8 + T9;
|
||
|
Tm = T8 - T9;
|
||
|
Tn = Ip[WS(rs, 1)];
|
||
|
To = Im[WS(rs, 2)];
|
||
|
Tp = Tn + To;
|
||
|
TK = Tn - To;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, Ts, Tt;
|
||
|
Tb = Rm[0];
|
||
|
Tc = Rp[WS(rs, 3)];
|
||
|
Td = Tb + Tc;
|
||
|
Tr = Tb - Tc;
|
||
|
Ts = Im[0];
|
||
|
Tt = Ip[WS(rs, 3)];
|
||
|
Tu = Ts + Tt;
|
||
|
TL = Tt - Ts;
|
||
|
}
|
||
|
Tl = Th + Tk;
|
||
|
T1p = TA + TD;
|
||
|
T1g = TN - TO;
|
||
|
TM = TK + TL;
|
||
|
T1k = Tk - Th;
|
||
|
TE = TA - TD;
|
||
|
TP = TN + TO;
|
||
|
T1f = Ta - Td;
|
||
|
T7 = T3 + T6;
|
||
|
Te = Ta + Td;
|
||
|
TU = T7 - Te;
|
||
|
TF = Tm - Tp;
|
||
|
TG = Tr - Tu;
|
||
|
TH = TF + TG;
|
||
|
T1l = TF - TG;
|
||
|
{
|
||
|
E Tq, Tv, T1a, T1b;
|
||
|
Tq = Tm + Tp;
|
||
|
Tv = Tr + Tu;
|
||
|
Tw = Tq - Tv;
|
||
|
T1q = Tq + Tv;
|
||
|
T1a = T3 - T6;
|
||
|
T1b = TL - TK;
|
||
|
T1c = T1a + T1b;
|
||
|
T1y = T1a - T1b;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tf, TQ, Tx, TI, Ty, TR, Tg, TJ, TS, Tz;
|
||
|
Tf = T7 + Te;
|
||
|
TQ = TM + TP;
|
||
|
Tx = FMA(KP707106781, Tw, Tl);
|
||
|
TI = FMA(KP707106781, TH, TE);
|
||
|
Tg = W[0];
|
||
|
Ty = Tg * Tx;
|
||
|
TR = Tg * TI;
|
||
|
Tz = W[1];
|
||
|
TJ = FMA(Tz, TI, Ty);
|
||
|
TS = FNMS(Tz, Tx, TR);
|
||
|
Rp[0] = Tf - TJ;
|
||
|
Ip[0] = TQ + TS;
|
||
|
Rm[0] = Tf + TJ;
|
||
|
Im[0] = TS - TQ;
|
||
|
}
|
||
|
{
|
||
|
E T1B, T1A, T1J, T1x, T1z, T1E, T1H, T1F, T1L, T1D;
|
||
|
T1B = T1g - T1f;
|
||
|
T1A = W[11];
|
||
|
T1J = T1A * T1y;
|
||
|
T1x = W[10];
|
||
|
T1z = T1x * T1y;
|
||
|
T1E = FNMS(KP707106781, T1l, T1k);
|
||
|
T1H = FMA(KP707106781, T1q, T1p);
|
||
|
T1D = W[12];
|
||
|
T1F = T1D * T1E;
|
||
|
T1L = T1D * T1H;
|
||
|
{
|
||
|
E T1C, T1K, T1I, T1M, T1G;
|
||
|
T1C = FNMS(T1A, T1B, T1z);
|
||
|
T1K = FMA(T1x, T1B, T1J);
|
||
|
T1G = W[13];
|
||
|
T1I = FMA(T1G, T1H, T1F);
|
||
|
T1M = FNMS(T1G, T1E, T1L);
|
||
|
Rp[WS(rs, 3)] = T1C - T1I;
|
||
|
Ip[WS(rs, 3)] = T1K + T1M;
|
||
|
Rm[WS(rs, 3)] = T1C + T1I;
|
||
|
Im[WS(rs, 3)] = T1M - T1K;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TX, TW, T15, TT, TV, T10, T13, T11, T17, TZ;
|
||
|
TX = TP - TM;
|
||
|
TW = W[7];
|
||
|
T15 = TW * TU;
|
||
|
TT = W[6];
|
||
|
TV = TT * TU;
|
||
|
T10 = FNMS(KP707106781, Tw, Tl);
|
||
|
T13 = FNMS(KP707106781, TH, TE);
|
||
|
TZ = W[8];
|
||
|
T11 = TZ * T10;
|
||
|
T17 = TZ * T13;
|
||
|
{
|
||
|
E TY, T16, T14, T18, T12;
|
||
|
TY = FNMS(TW, TX, TV);
|
||
|
T16 = FMA(TT, TX, T15);
|
||
|
T12 = W[9];
|
||
|
T14 = FMA(T12, T13, T11);
|
||
|
T18 = FNMS(T12, T10, T17);
|
||
|
Rp[WS(rs, 2)] = TY - T14;
|
||
|
Ip[WS(rs, 2)] = T16 + T18;
|
||
|
Rm[WS(rs, 2)] = TY + T14;
|
||
|
Im[WS(rs, 2)] = T18 - T16;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1h, T1e, T1t, T19, T1d, T1m, T1r, T1n, T1v, T1j;
|
||
|
T1h = T1f + T1g;
|
||
|
T1e = W[3];
|
||
|
T1t = T1e * T1c;
|
||
|
T19 = W[2];
|
||
|
T1d = T19 * T1c;
|
||
|
T1m = FMA(KP707106781, T1l, T1k);
|
||
|
T1r = FNMS(KP707106781, T1q, T1p);
|
||
|
T1j = W[4];
|
||
|
T1n = T1j * T1m;
|
||
|
T1v = T1j * T1r;
|
||
|
{
|
||
|
E T1i, T1u, T1s, T1w, T1o;
|
||
|
T1i = FNMS(T1e, T1h, T1d);
|
||
|
T1u = FMA(T19, T1h, T1t);
|
||
|
T1o = W[5];
|
||
|
T1s = FMA(T1o, T1r, T1n);
|
||
|
T1w = FNMS(T1o, T1m, T1v);
|
||
|
Rp[WS(rs, 1)] = T1i - T1s;
|
||
|
Ip[WS(rs, 1)] = T1u + T1w;
|
||
|
Rm[WS(rs, 1)] = T1i + T1s;
|
||
|
Im[WS(rs, 1)] = T1w - T1u;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 8 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, { 60, 14, 22, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cbdft_8) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cbdft_8 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 82 FP additions, 32 FP multiplications,
|
||
|
* (or, 68 additions, 18 multiplications, 14 fused multiply/add),
|
||
|
* 30 stack variables, 1 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cbdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(32, rs)) {
|
||
|
E T7, T1d, T1h, Tl, TG, T14, T19, TO, Te, TL, T18, T15, TB, T1e, Tw;
|
||
|
E T1i;
|
||
|
{
|
||
|
E T3, TC, Tk, TM, T6, Th, TF, TN;
|
||
|
{
|
||
|
E T1, T2, Ti, Tj;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 3)];
|
||
|
T3 = T1 + T2;
|
||
|
TC = T1 - T2;
|
||
|
Ti = Ip[0];
|
||
|
Tj = Im[WS(rs, 3)];
|
||
|
Tk = Ti + Tj;
|
||
|
TM = Ti - Tj;
|
||
|
}
|
||
|
{
|
||
|
E T4, T5, TD, TE;
|
||
|
T4 = Rp[WS(rs, 2)];
|
||
|
T5 = Rm[WS(rs, 1)];
|
||
|
T6 = T4 + T5;
|
||
|
Th = T4 - T5;
|
||
|
TD = Ip[WS(rs, 2)];
|
||
|
TE = Im[WS(rs, 1)];
|
||
|
TF = TD + TE;
|
||
|
TN = TD - TE;
|
||
|
}
|
||
|
T7 = T3 + T6;
|
||
|
T1d = Tk - Th;
|
||
|
T1h = TC + TF;
|
||
|
Tl = Th + Tk;
|
||
|
TG = TC - TF;
|
||
|
T14 = T3 - T6;
|
||
|
T19 = TM - TN;
|
||
|
TO = TM + TN;
|
||
|
}
|
||
|
{
|
||
|
E Ta, Tm, Tp, TJ, Td, Tr, Tu, TK;
|
||
|
{
|
||
|
E T8, T9, Tn, To;
|
||
|
T8 = Rp[WS(rs, 1)];
|
||
|
T9 = Rm[WS(rs, 2)];
|
||
|
Ta = T8 + T9;
|
||
|
Tm = T8 - T9;
|
||
|
Tn = Ip[WS(rs, 1)];
|
||
|
To = Im[WS(rs, 2)];
|
||
|
Tp = Tn + To;
|
||
|
TJ = Tn - To;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tc, Ts, Tt;
|
||
|
Tb = Rm[0];
|
||
|
Tc = Rp[WS(rs, 3)];
|
||
|
Td = Tb + Tc;
|
||
|
Tr = Tb - Tc;
|
||
|
Ts = Im[0];
|
||
|
Tt = Ip[WS(rs, 3)];
|
||
|
Tu = Ts + Tt;
|
||
|
TK = Tt - Ts;
|
||
|
}
|
||
|
Te = Ta + Td;
|
||
|
TL = TJ + TK;
|
||
|
T18 = Ta - Td;
|
||
|
T15 = TK - TJ;
|
||
|
{
|
||
|
E Tz, TA, Tq, Tv;
|
||
|
Tz = Tm - Tp;
|
||
|
TA = Tr - Tu;
|
||
|
TB = KP707106781 * (Tz + TA);
|
||
|
T1e = KP707106781 * (Tz - TA);
|
||
|
Tq = Tm + Tp;
|
||
|
Tv = Tr + Tu;
|
||
|
Tw = KP707106781 * (Tq - Tv);
|
||
|
T1i = KP707106781 * (Tq + Tv);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tf, TP, TI, TQ;
|
||
|
Tf = T7 + Te;
|
||
|
TP = TL + TO;
|
||
|
{
|
||
|
E Tx, TH, Tg, Ty;
|
||
|
Tx = Tl + Tw;
|
||
|
TH = TB + TG;
|
||
|
Tg = W[0];
|
||
|
Ty = W[1];
|
||
|
TI = FMA(Tg, Tx, Ty * TH);
|
||
|
TQ = FNMS(Ty, Tx, Tg * TH);
|
||
|
}
|
||
|
Rp[0] = Tf - TI;
|
||
|
Ip[0] = TP + TQ;
|
||
|
Rm[0] = Tf + TI;
|
||
|
Im[0] = TQ - TP;
|
||
|
}
|
||
|
{
|
||
|
E T1r, T1x, T1w, T1y;
|
||
|
{
|
||
|
E T1o, T1q, T1n, T1p;
|
||
|
T1o = T14 - T15;
|
||
|
T1q = T19 - T18;
|
||
|
T1n = W[10];
|
||
|
T1p = W[11];
|
||
|
T1r = FNMS(T1p, T1q, T1n * T1o);
|
||
|
T1x = FMA(T1p, T1o, T1n * T1q);
|
||
|
}
|
||
|
{
|
||
|
E T1t, T1v, T1s, T1u;
|
||
|
T1t = T1d - T1e;
|
||
|
T1v = T1i + T1h;
|
||
|
T1s = W[12];
|
||
|
T1u = W[13];
|
||
|
T1w = FMA(T1s, T1t, T1u * T1v);
|
||
|
T1y = FNMS(T1u, T1t, T1s * T1v);
|
||
|
}
|
||
|
Rp[WS(rs, 3)] = T1r - T1w;
|
||
|
Ip[WS(rs, 3)] = T1x + T1y;
|
||
|
Rm[WS(rs, 3)] = T1r + T1w;
|
||
|
Im[WS(rs, 3)] = T1y - T1x;
|
||
|
}
|
||
|
{
|
||
|
E TV, T11, T10, T12;
|
||
|
{
|
||
|
E TS, TU, TR, TT;
|
||
|
TS = T7 - Te;
|
||
|
TU = TO - TL;
|
||
|
TR = W[6];
|
||
|
TT = W[7];
|
||
|
TV = FNMS(TT, TU, TR * TS);
|
||
|
T11 = FMA(TT, TS, TR * TU);
|
||
|
}
|
||
|
{
|
||
|
E TX, TZ, TW, TY;
|
||
|
TX = Tl - Tw;
|
||
|
TZ = TG - TB;
|
||
|
TW = W[8];
|
||
|
TY = W[9];
|
||
|
T10 = FMA(TW, TX, TY * TZ);
|
||
|
T12 = FNMS(TY, TX, TW * TZ);
|
||
|
}
|
||
|
Rp[WS(rs, 2)] = TV - T10;
|
||
|
Ip[WS(rs, 2)] = T11 + T12;
|
||
|
Rm[WS(rs, 2)] = TV + T10;
|
||
|
Im[WS(rs, 2)] = T12 - T11;
|
||
|
}
|
||
|
{
|
||
|
E T1b, T1l, T1k, T1m;
|
||
|
{
|
||
|
E T16, T1a, T13, T17;
|
||
|
T16 = T14 + T15;
|
||
|
T1a = T18 + T19;
|
||
|
T13 = W[2];
|
||
|
T17 = W[3];
|
||
|
T1b = FNMS(T17, T1a, T13 * T16);
|
||
|
T1l = FMA(T17, T16, T13 * T1a);
|
||
|
}
|
||
|
{
|
||
|
E T1f, T1j, T1c, T1g;
|
||
|
T1f = T1d + T1e;
|
||
|
T1j = T1h - T1i;
|
||
|
T1c = W[4];
|
||
|
T1g = W[5];
|
||
|
T1k = FMA(T1c, T1f, T1g * T1j);
|
||
|
T1m = FNMS(T1g, T1f, T1c * T1j);
|
||
|
}
|
||
|
Rp[WS(rs, 1)] = T1b - T1k;
|
||
|
Ip[WS(rs, 1)] = T1l + T1m;
|
||
|
Rm[WS(rs, 1)] = T1b + T1k;
|
||
|
Im[WS(rs, 1)] = T1m - T1l;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 8 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 8, "hc2cbdft_8", twinstr, &GENUS, { 68, 18, 14, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cbdft_8) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cbdft_8, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#endif
|