furnace/extern/fftw/rdft/scalar/r2cf/hc2cfdft_16.c

910 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:37 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
/*
* This function contains 206 FP additions, 132 FP multiplications,
* (or, 136 additions, 62 multiplications, 70 fused multiply/add),
* 67 stack variables, 4 constants, and 64 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
E T1f, T2e, T1c, T2g, T1K, T3D, T2W, T3H, TR, T2j, T2R, T3E, T11, T2l, T1v;
E T3G, Ta, T2p, Tk, T2r, T3o, T3p, T1Y, T3z, T2G, T3w, Tv, T2u, TF, T2w;
E T3r, T3s, T2b, T3A, T2L, T3x;
{
E T1d, T1e, T1I, T16, T1A, T1D, T1E, T1C, T1G, T1H, T2U, T1b, T1z, T2S, T1w;
E T1y, T14, T15;
T1d = Ip[0];
T1e = Im[0];
T1I = T1d + T1e;
T14 = Ip[WS(rs, 4)];
T15 = Im[WS(rs, 4)];
T16 = T14 - T15;
T1A = T14 + T15;
{
E T1F, T19, T1a, T1x;
T1D = Rm[0];
T1E = Rp[0];
T1F = T1D - T1E;
T1C = W[0];
T1G = T1C * T1F;
T1H = W[1];
T2U = T1H * T1F;
T19 = Rp[WS(rs, 4)];
T1a = Rm[WS(rs, 4)];
T1x = T1a - T19;
T1b = T19 + T1a;
T1z = W[17];
T2S = T1z * T1x;
T1w = W[16];
T1y = T1w * T1x;
}
T1f = T1d - T1e;
T2e = T1E + T1D;
{
E T17, T2f, T13, T18;
T13 = W[14];
T17 = T13 * T16;
T2f = T13 * T1b;
T18 = W[15];
T1c = FNMS(T18, T1b, T17);
T2g = FMA(T18, T16, T2f);
}
{
E T1B, T1J, T2T, T2V;
T1B = FNMS(T1z, T1A, T1y);
T1J = FNMS(T1H, T1I, T1G);
T1K = T1B + T1J;
T3D = T1J - T1B;
T2T = FMA(T1w, T1A, T2S);
T2V = FMA(T1C, T1I, T2U);
T2W = T2T + T2V;
T3H = T2V - T2T;
}
}
{
E TL, T1n, TQ, T1m, T2N, T1j, T1l, TV, T1t, T10, T1s, T2P, T1p, T1r;
{
E TJ, TK, TO, TP, T1k;
TJ = Ip[WS(rs, 2)];
TK = Im[WS(rs, 2)];
TL = TJ - TK;
T1n = TJ + TK;
TO = Rp[WS(rs, 2)];
TP = Rm[WS(rs, 2)];
T1k = TP - TO;
TQ = TO + TP;
T1m = W[9];
T2N = T1m * T1k;
T1j = W[8];
T1l = T1j * T1k;
}
{
E TT, TU, TY, TZ, T1q;
TT = Ip[WS(rs, 6)];
TU = Im[WS(rs, 6)];
TV = TT - TU;
T1t = TT + TU;
TY = Rp[WS(rs, 6)];
TZ = Rm[WS(rs, 6)];
T1q = TZ - TY;
T10 = TY + TZ;
T1s = W[25];
T2P = T1s * T1q;
T1p = W[24];
T1r = T1p * T1q;
}
{
E T2O, T2Q, T1o, T1u;
{
E TM, T2i, TI, TN;
TI = W[6];
TM = TI * TL;
T2i = TI * TQ;
TN = W[7];
TR = FNMS(TN, TQ, TM);
T2j = FMA(TN, TL, T2i);
}
T2O = FMA(T1j, T1n, T2N);
T2Q = FMA(T1p, T1t, T2P);
T2R = T2O + T2Q;
T3E = T2O - T2Q;
{
E TW, T2k, TS, TX;
TS = W[22];
TW = TS * TV;
T2k = TS * T10;
TX = W[23];
T11 = FNMS(TX, T10, TW);
T2l = FMA(TX, TV, T2k);
}
T1o = FNMS(T1m, T1n, T1l);
T1u = FNMS(T1s, T1t, T1r);
T1v = T1o + T1u;
T3G = T1o - T1u;
}
}
{
E T4, T1Q, T9, T1N, T5, T2o, T1O, T2C, Te, T1W, Tj, T1T, Tf, T2q, T1U;
E T2E, T6, Tg;
{
E T1, T1M, Tb, T1S;
{
E T2, T3, T7, T8;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
T1Q = T2 + T3;
T7 = Rp[WS(rs, 1)];
T8 = Rm[WS(rs, 1)];
T9 = T7 + T8;
T1N = T7 - T8;
}
T1 = W[2];
T5 = T1 * T4;
T2o = T1 * T9;
T1M = W[4];
T1O = T1M * T1N;
T2C = T1M * T1Q;
{
E Tc, Td, Th, Ti;
Tc = Ip[WS(rs, 5)];
Td = Im[WS(rs, 5)];
Te = Tc - Td;
T1W = Tc + Td;
Th = Rp[WS(rs, 5)];
Ti = Rm[WS(rs, 5)];
Tj = Th + Ti;
T1T = Th - Ti;
}
Tb = W[18];
Tf = Tb * Te;
T2q = Tb * Tj;
T1S = W[20];
T1U = T1S * T1T;
T2E = T1S * T1W;
}
T6 = W[3];
Ta = FNMS(T6, T9, T5);
T2p = FMA(T6, T4, T2o);
Tg = W[19];
Tk = FNMS(Tg, Tj, Tf);
T2r = FMA(Tg, Te, T2q);
T3o = Ta - Tk;
T3p = T2p - T2r;
{
E T1R, T2D, T1X, T2F, T1P, T1V;
T1P = W[5];
T1R = FMA(T1P, T1Q, T1O);
T2D = FNMS(T1P, T1N, T2C);
T1V = W[21];
T1X = FMA(T1V, T1W, T1U);
T2F = FNMS(T1V, T1T, T2E);
T1Y = T1R + T1X;
T3z = T1X - T1R;
T2G = T2D + T2F;
T3w = T2F - T2D;
}
}
{
E Tp, T23, Tu, T20, Tq, T2t, T21, T2H, Tz, T29, TE, T26, TA, T2v, T27;
E T2J, Tr, TB;
{
E Tm, T1Z, Tw, T25;
{
E Tn, To, Ts, Tt;
Tn = Ip[WS(rs, 7)];
To = Im[WS(rs, 7)];
Tp = Tn - To;
T23 = Tn + To;
Ts = Rp[WS(rs, 7)];
Tt = Rm[WS(rs, 7)];
Tu = Ts + Tt;
T20 = Ts - Tt;
}
Tm = W[26];
Tq = Tm * Tp;
T2t = Tm * Tu;
T1Z = W[28];
T21 = T1Z * T20;
T2H = T1Z * T23;
{
E Tx, Ty, TC, TD;
Tx = Ip[WS(rs, 3)];
Ty = Im[WS(rs, 3)];
Tz = Tx - Ty;
T29 = Tx + Ty;
TC = Rp[WS(rs, 3)];
TD = Rm[WS(rs, 3)];
TE = TC + TD;
T26 = TC - TD;
}
Tw = W[10];
TA = Tw * Tz;
T2v = Tw * TE;
T25 = W[12];
T27 = T25 * T26;
T2J = T25 * T29;
}
Tr = W[27];
Tv = FNMS(Tr, Tu, Tq);
T2u = FMA(Tr, Tp, T2t);
TB = W[11];
TF = FNMS(TB, TE, TA);
T2w = FMA(TB, Tz, T2v);
T3r = T2u - T2w;
T3s = Tv - TF;
{
E T24, T2I, T2a, T2K, T22, T28;
T22 = W[29];
T24 = FMA(T22, T23, T21);
T2I = FNMS(T22, T20, T2H);
T28 = W[13];
T2a = FMA(T28, T29, T27);
T2K = FNMS(T28, T26, T2J);
T2b = T24 + T2a;
T3A = T2I - T2K;
T2L = T2I + T2K;
T3x = T2a - T24;
}
}
{
E TH, T3c, T36, T3g, T39, T3h, T1h, T32, T2d, T2A, T2y, T31, T2Y, T30, T2n;
E T3b;
{
E Tl, TG, T34, T35;
Tl = Ta + Tk;
TG = Tv + TF;
TH = Tl + TG;
T3c = Tl - TG;
T34 = T2L - T2G;
T35 = T1Y - T2b;
T36 = T34 + T35;
T3g = T34 - T35;
}
{
E T37, T38, T12, T1g;
T37 = T1K - T1v;
T38 = T2W - T2R;
T39 = T37 - T38;
T3h = T37 + T38;
T12 = TR + T11;
T1g = T1c + T1f;
T1h = T12 + T1g;
T32 = T1g - T12;
}
{
E T1L, T2c, T2s, T2x;
T1L = T1v + T1K;
T2c = T1Y + T2b;
T2d = T1L - T2c;
T2A = T2c + T1L;
T2s = T2p + T2r;
T2x = T2u + T2w;
T2y = T2s + T2x;
T31 = T2x - T2s;
}
{
E T2M, T2X, T2h, T2m;
T2M = T2G + T2L;
T2X = T2R + T2W;
T2Y = T2M - T2X;
T30 = T2M + T2X;
T2h = T2e + T2g;
T2m = T2j + T2l;
T2n = T2h + T2m;
T3b = T2h - T2m;
}
{
E T1i, T2Z, T2z, T2B;
T1i = TH + T1h;
Ip[0] = KP500000000 * (T1i + T2d);
Im[WS(rs, 7)] = KP500000000 * (T2d - T1i);
T2Z = T2n + T2y;
Rm[WS(rs, 7)] = KP500000000 * (T2Z - T30);
Rp[0] = KP500000000 * (T2Z + T30);
T2z = T2n - T2y;
Rm[WS(rs, 3)] = KP500000000 * (T2z - T2A);
Rp[WS(rs, 4)] = KP500000000 * (T2z + T2A);
T2B = T1h - TH;
Ip[WS(rs, 4)] = KP500000000 * (T2B + T2Y);
Im[WS(rs, 3)] = KP500000000 * (T2Y - T2B);
}
{
E T33, T3a, T3j, T3k;
T33 = T31 + T32;
T3a = T36 + T39;
Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3a, T33));
Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3a, T33)));
T3j = T3b + T3c;
T3k = T3g + T3h;
Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3k, T3j));
Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3k, T3j));
}
{
E T3d, T3e, T3f, T3i;
T3d = T3b - T3c;
T3e = T39 - T36;
Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3e, T3d));
Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3e, T3d));
T3f = T32 - T31;
T3i = T3g - T3h;
Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3i, T3f));
Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3i, T3f)));
}
}
{
E T3n, T3Z, T44, T4e, T47, T4f, T3u, T4a, T3C, T3U, T3N, T49, T3Q, T40, T3J;
E T3V;
{
E T3l, T3m, T42, T43;
T3l = T1f - T1c;
T3m = T2j - T2l;
T3n = T3l - T3m;
T3Z = T3m + T3l;
T42 = T3w - T3x;
T43 = T3A - T3z;
T44 = FMA(KP414213562, T43, T42);
T4e = FNMS(KP414213562, T42, T43);
}
{
E T45, T46, T3q, T3t;
T45 = T3E + T3D;
T46 = T3H - T3G;
T47 = FMA(KP414213562, T46, T45);
T4f = FNMS(KP414213562, T45, T46);
T3q = T3o - T3p;
T3t = T3r + T3s;
T3u = T3q + T3t;
T4a = T3q - T3t;
}
{
E T3y, T3B, T3L, T3M;
T3y = T3w + T3x;
T3B = T3z + T3A;
T3C = FMA(KP414213562, T3B, T3y);
T3U = FNMS(KP414213562, T3y, T3B);
T3L = T2e - T2g;
T3M = TR - T11;
T3N = T3L + T3M;
T49 = T3L - T3M;
}
{
E T3O, T3P, T3F, T3I;
T3O = T3p + T3o;
T3P = T3r - T3s;
T3Q = T3O + T3P;
T40 = T3P - T3O;
T3F = T3D - T3E;
T3I = T3G + T3H;
T3J = FNMS(KP414213562, T3I, T3F);
T3V = FMA(KP414213562, T3F, T3I);
}
{
E T3v, T3K, T3X, T3Y;
T3v = FMA(KP707106781, T3u, T3n);
T3K = T3C + T3J;
Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3K, T3v));
Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3K, T3v)));
T3X = FMA(KP707106781, T3Q, T3N);
T3Y = T3U + T3V;
Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T3Y, T3X));
Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3Y, T3X));
}
{
E T3R, T3S, T3T, T3W;
T3R = FNMS(KP707106781, T3Q, T3N);
T3S = T3J - T3C;
Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T3S, T3R));
Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3S, T3R));
T3T = FNMS(KP707106781, T3u, T3n);
T3W = T3U - T3V;
Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3W, T3T));
Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3T)));
}
{
E T41, T48, T4h, T4i;
T41 = FNMS(KP707106781, T40, T3Z);
T48 = T44 - T47;
Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T48, T41));
Im[0] = -(KP500000000 * (FNMS(KP923879532, T48, T41)));
T4h = FNMS(KP707106781, T4a, T49);
T4i = T4e + T4f;
Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4i, T4h));
Rm[0] = KP500000000 * (FMA(KP923879532, T4i, T4h));
}
{
E T4b, T4c, T4d, T4g;
T4b = FMA(KP707106781, T4a, T49);
T4c = T44 + T47;
Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4c, T4b));
Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4c, T4b));
T4d = FMA(KP707106781, T40, T3Z);
T4g = T4e - T4f;
Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4g, T4d));
Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4g, T4d)));
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 136, 62, 70, 0 } };
void X(codelet_hc2cfdft_16) (planner *p) {
X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
/*
* This function contains 206 FP additions, 100 FP multiplications,
* (or, 168 additions, 62 multiplications, 38 fused multiply/add),
* 61 stack variables, 4 constants, and 64 memory accesses
*/
#include "rdft/scalar/hc2cf.h"
static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP461939766, +0.461939766255643378064091594698394143411208313);
DK(KP191341716, +0.191341716182544885864229992015199433380672281);
DK(KP353553390, +0.353553390593273762200422181052424519642417969);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
E T19, T3h, T21, T2Y, T1o, T3d, T2s, T39, TW, T3i, T24, T2Z, T1z, T3c, T2p;
E T3a, Tj, T2S, T28, T2R, T1L, T36, T2i, T32, TC, T2V, T2b, T2U, T1W, T35;
E T2l, T33;
{
E T10, T1m, T14, T1k, T18, T1h, T1f, T1Z;
{
E TY, TZ, T12, T13;
TY = Ip[WS(rs, 4)];
TZ = Im[WS(rs, 4)];
T10 = TY - TZ;
T1m = TY + TZ;
T12 = Rp[WS(rs, 4)];
T13 = Rm[WS(rs, 4)];
T14 = T12 + T13;
T1k = T12 - T13;
}
{
E T16, T17, T1d, T1e;
T16 = Ip[0];
T17 = Im[0];
T18 = T16 - T17;
T1h = T16 + T17;
T1d = Rm[0];
T1e = Rp[0];
T1f = T1d - T1e;
T1Z = T1e + T1d;
}
{
E T15, T20, TX, T11;
TX = W[14];
T11 = W[15];
T15 = FNMS(T11, T14, TX * T10);
T20 = FMA(TX, T14, T11 * T10);
T19 = T15 + T18;
T3h = T1Z - T20;
T21 = T1Z + T20;
T2Y = T18 - T15;
}
{
E T1i, T2r, T1n, T2q;
{
E T1c, T1g, T1j, T1l;
T1c = W[0];
T1g = W[1];
T1i = FNMS(T1g, T1h, T1c * T1f);
T2r = FMA(T1g, T1f, T1c * T1h);
T1j = W[16];
T1l = W[17];
T1n = FMA(T1j, T1k, T1l * T1m);
T2q = FNMS(T1l, T1k, T1j * T1m);
}
T1o = T1i - T1n;
T3d = T2r - T2q;
T2s = T2q + T2r;
T39 = T1n + T1i;
}
}
{
E TH, T1s, TL, T1q, TQ, T1x, TU, T1v;
{
E TF, TG, TJ, TK;
TF = Ip[WS(rs, 2)];
TG = Im[WS(rs, 2)];
TH = TF - TG;
T1s = TF + TG;
TJ = Rp[WS(rs, 2)];
TK = Rm[WS(rs, 2)];
TL = TJ + TK;
T1q = TJ - TK;
}
{
E TO, TP, TS, TT;
TO = Ip[WS(rs, 6)];
TP = Im[WS(rs, 6)];
TQ = TO - TP;
T1x = TO + TP;
TS = Rp[WS(rs, 6)];
TT = Rm[WS(rs, 6)];
TU = TS + TT;
T1v = TS - TT;
}
{
E TM, T22, TV, T23;
{
E TE, TI, TN, TR;
TE = W[6];
TI = W[7];
TM = FNMS(TI, TL, TE * TH);
T22 = FMA(TE, TL, TI * TH);
TN = W[22];
TR = W[23];
TV = FNMS(TR, TU, TN * TQ);
T23 = FMA(TN, TU, TR * TQ);
}
TW = TM + TV;
T3i = TM - TV;
T24 = T22 + T23;
T2Z = T22 - T23;
}
{
E T1t, T2n, T1y, T2o;
{
E T1p, T1r, T1u, T1w;
T1p = W[8];
T1r = W[9];
T1t = FMA(T1p, T1q, T1r * T1s);
T2n = FNMS(T1r, T1q, T1p * T1s);
T1u = W[24];
T1w = W[25];
T1y = FMA(T1u, T1v, T1w * T1x);
T2o = FNMS(T1w, T1v, T1u * T1x);
}
T1z = T1t + T1y;
T3c = T1y - T1t;
T2p = T2n + T2o;
T3a = T2n - T2o;
}
}
{
E T4, T1E, T8, T1C, Td, T1J, Th, T1H;
{
E T2, T3, T6, T7;
T2 = Ip[WS(rs, 1)];
T3 = Im[WS(rs, 1)];
T4 = T2 - T3;
T1E = T2 + T3;
T6 = Rp[WS(rs, 1)];
T7 = Rm[WS(rs, 1)];
T8 = T6 + T7;
T1C = T6 - T7;
}
{
E Tb, Tc, Tf, Tg;
Tb = Ip[WS(rs, 5)];
Tc = Im[WS(rs, 5)];
Td = Tb - Tc;
T1J = Tb + Tc;
Tf = Rp[WS(rs, 5)];
Tg = Rm[WS(rs, 5)];
Th = Tf + Tg;
T1H = Tf - Tg;
}
{
E T9, T26, Ti, T27;
{
E T1, T5, Ta, Te;
T1 = W[2];
T5 = W[3];
T9 = FNMS(T5, T8, T1 * T4);
T26 = FMA(T1, T8, T5 * T4);
Ta = W[18];
Te = W[19];
Ti = FNMS(Te, Th, Ta * Td);
T27 = FMA(Ta, Th, Te * Td);
}
Tj = T9 + Ti;
T2S = T26 - T27;
T28 = T26 + T27;
T2R = T9 - Ti;
}
{
E T1F, T2g, T1K, T2h;
{
E T1B, T1D, T1G, T1I;
T1B = W[4];
T1D = W[5];
T1F = FMA(T1B, T1C, T1D * T1E);
T2g = FNMS(T1D, T1C, T1B * T1E);
T1G = W[20];
T1I = W[21];
T1K = FMA(T1G, T1H, T1I * T1J);
T2h = FNMS(T1I, T1H, T1G * T1J);
}
T1L = T1F + T1K;
T36 = T2g - T2h;
T2i = T2g + T2h;
T32 = T1K - T1F;
}
}
{
E Tn, T1P, Tr, T1N, Tw, T1U, TA, T1S;
{
E Tl, Tm, Tp, Tq;
Tl = Ip[WS(rs, 7)];
Tm = Im[WS(rs, 7)];
Tn = Tl - Tm;
T1P = Tl + Tm;
Tp = Rp[WS(rs, 7)];
Tq = Rm[WS(rs, 7)];
Tr = Tp + Tq;
T1N = Tp - Tq;
}
{
E Tu, Tv, Ty, Tz;
Tu = Ip[WS(rs, 3)];
Tv = Im[WS(rs, 3)];
Tw = Tu - Tv;
T1U = Tu + Tv;
Ty = Rp[WS(rs, 3)];
Tz = Rm[WS(rs, 3)];
TA = Ty + Tz;
T1S = Ty - Tz;
}
{
E Ts, T29, TB, T2a;
{
E Tk, To, Tt, Tx;
Tk = W[26];
To = W[27];
Ts = FNMS(To, Tr, Tk * Tn);
T29 = FMA(Tk, Tr, To * Tn);
Tt = W[10];
Tx = W[11];
TB = FNMS(Tx, TA, Tt * Tw);
T2a = FMA(Tt, TA, Tx * Tw);
}
TC = Ts + TB;
T2V = Ts - TB;
T2b = T29 + T2a;
T2U = T29 - T2a;
}
{
E T1Q, T2j, T1V, T2k;
{
E T1M, T1O, T1R, T1T;
T1M = W[28];
T1O = W[29];
T1Q = FMA(T1M, T1N, T1O * T1P);
T2j = FNMS(T1O, T1N, T1M * T1P);
T1R = W[12];
T1T = W[13];
T1V = FMA(T1R, T1S, T1T * T1U);
T2k = FNMS(T1T, T1S, T1R * T1U);
}
T1W = T1Q + T1V;
T35 = T1V - T1Q;
T2l = T2j + T2k;
T33 = T2j - T2k;
}
}
{
E T1b, T2f, T2u, T2w, T1Y, T2e, T2d, T2v;
{
E TD, T1a, T2m, T2t;
TD = Tj + TC;
T1a = TW + T19;
T1b = TD + T1a;
T2f = T1a - TD;
T2m = T2i + T2l;
T2t = T2p + T2s;
T2u = T2m - T2t;
T2w = T2m + T2t;
}
{
E T1A, T1X, T25, T2c;
T1A = T1o - T1z;
T1X = T1L + T1W;
T1Y = T1A - T1X;
T2e = T1X + T1A;
T25 = T21 + T24;
T2c = T28 + T2b;
T2d = T25 - T2c;
T2v = T25 + T2c;
}
Ip[0] = KP500000000 * (T1b + T1Y);
Rp[0] = KP500000000 * (T2v + T2w);
Im[WS(rs, 7)] = KP500000000 * (T1Y - T1b);
Rm[WS(rs, 7)] = KP500000000 * (T2v - T2w);
Rm[WS(rs, 3)] = KP500000000 * (T2d - T2e);
Im[WS(rs, 3)] = KP500000000 * (T2u - T2f);
Rp[WS(rs, 4)] = KP500000000 * (T2d + T2e);
Ip[WS(rs, 4)] = KP500000000 * (T2f + T2u);
}
{
E T2z, T2L, T2J, T2P, T2C, T2M, T2F, T2N;
{
E T2x, T2y, T2H, T2I;
T2x = T2b - T28;
T2y = T19 - TW;
T2z = KP500000000 * (T2x + T2y);
T2L = KP500000000 * (T2y - T2x);
T2H = T21 - T24;
T2I = Tj - TC;
T2J = KP500000000 * (T2H - T2I);
T2P = KP500000000 * (T2H + T2I);
}
{
E T2A, T2B, T2D, T2E;
T2A = T2l - T2i;
T2B = T1L - T1W;
T2C = T2A + T2B;
T2M = T2A - T2B;
T2D = T1z + T1o;
T2E = T2s - T2p;
T2F = T2D - T2E;
T2N = T2D + T2E;
}
{
E T2G, T2Q, T2K, T2O;
T2G = KP353553390 * (T2C + T2F);
Ip[WS(rs, 2)] = T2z + T2G;
Im[WS(rs, 5)] = T2G - T2z;
T2Q = KP353553390 * (T2M + T2N);
Rm[WS(rs, 5)] = T2P - T2Q;
Rp[WS(rs, 2)] = T2P + T2Q;
T2K = KP353553390 * (T2F - T2C);
Rm[WS(rs, 1)] = T2J - T2K;
Rp[WS(rs, 6)] = T2J + T2K;
T2O = KP353553390 * (T2M - T2N);
Ip[WS(rs, 6)] = T2L + T2O;
Im[WS(rs, 1)] = T2O - T2L;
}
}
{
E T30, T3w, T3F, T3j, T2X, T3G, T3D, T3L, T3m, T3v, T38, T3q, T3A, T3K, T3f;
E T3r;
{
E T2T, T2W, T34, T37;
T30 = KP500000000 * (T2Y - T2Z);
T3w = KP500000000 * (T2Z + T2Y);
T3F = KP500000000 * (T3h - T3i);
T3j = KP500000000 * (T3h + T3i);
T2T = T2R - T2S;
T2W = T2U + T2V;
T2X = KP353553390 * (T2T + T2W);
T3G = KP353553390 * (T2T - T2W);
{
E T3B, T3C, T3k, T3l;
T3B = T3a + T39;
T3C = T3d - T3c;
T3D = FNMS(KP461939766, T3C, KP191341716 * T3B);
T3L = FMA(KP461939766, T3B, KP191341716 * T3C);
T3k = T2S + T2R;
T3l = T2U - T2V;
T3m = KP353553390 * (T3k + T3l);
T3v = KP353553390 * (T3l - T3k);
}
T34 = T32 + T33;
T37 = T35 - T36;
T38 = FMA(KP191341716, T34, KP461939766 * T37);
T3q = FNMS(KP191341716, T37, KP461939766 * T34);
{
E T3y, T3z, T3b, T3e;
T3y = T33 - T32;
T3z = T36 + T35;
T3A = FMA(KP461939766, T3y, KP191341716 * T3z);
T3K = FNMS(KP461939766, T3z, KP191341716 * T3y);
T3b = T39 - T3a;
T3e = T3c + T3d;
T3f = FNMS(KP191341716, T3e, KP461939766 * T3b);
T3r = FMA(KP191341716, T3b, KP461939766 * T3e);
}
}
{
E T31, T3g, T3t, T3u;
T31 = T2X + T30;
T3g = T38 + T3f;
Ip[WS(rs, 1)] = T31 + T3g;
Im[WS(rs, 6)] = T3g - T31;
T3t = T3j + T3m;
T3u = T3q + T3r;
Rm[WS(rs, 6)] = T3t - T3u;
Rp[WS(rs, 1)] = T3t + T3u;
}
{
E T3n, T3o, T3p, T3s;
T3n = T3j - T3m;
T3o = T3f - T38;
Rm[WS(rs, 2)] = T3n - T3o;
Rp[WS(rs, 5)] = T3n + T3o;
T3p = T30 - T2X;
T3s = T3q - T3r;
Ip[WS(rs, 5)] = T3p + T3s;
Im[WS(rs, 2)] = T3s - T3p;
}
{
E T3x, T3E, T3N, T3O;
T3x = T3v + T3w;
T3E = T3A + T3D;
Ip[WS(rs, 3)] = T3x + T3E;
Im[WS(rs, 4)] = T3E - T3x;
T3N = T3F + T3G;
T3O = T3K + T3L;
Rm[WS(rs, 4)] = T3N - T3O;
Rp[WS(rs, 3)] = T3N + T3O;
}
{
E T3H, T3I, T3J, T3M;
T3H = T3F - T3G;
T3I = T3D - T3A;
Rm[0] = T3H - T3I;
Rp[WS(rs, 7)] = T3H + T3I;
T3J = T3w - T3v;
T3M = T3K - T3L;
Ip[WS(rs, 7)] = T3J + T3M;
Im[0] = T3M - T3J;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 168, 62, 38, 0 } };
void X(codelet_hc2cfdft_16) (planner *p) {
X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
}
#endif