mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-08 22:05:05 +00:00
647 lines
16 KiB
C
647 lines
16 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:37 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 142 FP additions, 92 FP multiplications,
|
||
|
* (or, 96 additions, 46 multiplications, 46 fused multiply/add),
|
||
|
* 65 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cf.h"
|
||
|
|
||
|
static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
|
||
|
E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B;
|
||
|
E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q;
|
||
|
E TU, T1R;
|
||
|
{
|
||
|
E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4;
|
||
|
E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n;
|
||
|
Tm = Ip[0];
|
||
|
Tn = Im[0];
|
||
|
T1u = Tm + Tn;
|
||
|
T1x = Rp[0];
|
||
|
T1y = Rm[0];
|
||
|
T1z = T1x - T1y;
|
||
|
T1t = W[0];
|
||
|
T1v = T1t * T1u;
|
||
|
T2c = T1t * T1z;
|
||
|
{
|
||
|
E Tc, Td, Th, Ti, Tb;
|
||
|
Tc = Ip[WS(rs, 4)];
|
||
|
Td = Im[WS(rs, 4)];
|
||
|
Te = Tc - Td;
|
||
|
Th = Rp[WS(rs, 4)];
|
||
|
Ti = Rm[WS(rs, 4)];
|
||
|
Tj = Th + Ti;
|
||
|
T1i = Tc + Td;
|
||
|
T1l = Th - Ti;
|
||
|
Tb = W[14];
|
||
|
Tf = Tb * Te;
|
||
|
T1H = Tb * Tj;
|
||
|
}
|
||
|
{
|
||
|
E T2, T3, T7, T8;
|
||
|
T2 = Ip[WS(rs, 2)];
|
||
|
T3 = Im[WS(rs, 2)];
|
||
|
T4 = T2 - T3;
|
||
|
T1o = T2 + T3;
|
||
|
T7 = Rp[WS(rs, 2)];
|
||
|
T8 = Rm[WS(rs, 2)];
|
||
|
T9 = T7 + T8;
|
||
|
T1r = T7 - T8;
|
||
|
}
|
||
|
T1 = W[6];
|
||
|
T5 = T1 * T4;
|
||
|
T1F = T1 * T9;
|
||
|
T1n = W[8];
|
||
|
T1p = T1n * T1o;
|
||
|
T2a = T1n * T1r;
|
||
|
To = Tm - Tn;
|
||
|
T1E = T1x + T1y;
|
||
|
{
|
||
|
E T1j, T2G, T1h, T1k;
|
||
|
T1h = W[16];
|
||
|
T1j = T1h * T1i;
|
||
|
T2G = T1h * T1l;
|
||
|
T1k = W[17];
|
||
|
T1m = FNMS(T1k, T1l, T1j);
|
||
|
T2H = FMA(T1k, T1i, T2G);
|
||
|
}
|
||
|
{
|
||
|
E T6, Tg, T1q, T1w;
|
||
|
T6 = W[7];
|
||
|
Ta = FNMS(T6, T9, T5);
|
||
|
T1G = FMA(T6, T4, T1F);
|
||
|
Tg = W[15];
|
||
|
Tk = FNMS(Tg, Tj, Tf);
|
||
|
T1I = FMA(Tg, Te, T1H);
|
||
|
Tl = Ta + Tk;
|
||
|
T1J = T1G + T1I;
|
||
|
T1q = W[9];
|
||
|
T1s = FNMS(T1q, T1r, T1p);
|
||
|
T2b = FMA(T1q, T1o, T2a);
|
||
|
T1w = W[1];
|
||
|
T1A = FNMS(T1w, T1z, T1v);
|
||
|
T2d = FMA(T1w, T1u, T2c);
|
||
|
T1B = T1s + T1A;
|
||
|
T2I = T2b + T2d;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI;
|
||
|
E T17, T16, T25, T13, T15, TE, T1N, TF, TP;
|
||
|
{
|
||
|
E Tr, Ts, Tw, Tx, TY;
|
||
|
Tr = Ip[WS(rs, 3)];
|
||
|
Ts = Im[WS(rs, 3)];
|
||
|
Tt = Tr - Ts;
|
||
|
T11 = Tr + Ts;
|
||
|
Tw = Rp[WS(rs, 3)];
|
||
|
Tx = Rm[WS(rs, 3)];
|
||
|
TY = Tx - Tw;
|
||
|
Ty = Tw + Tx;
|
||
|
T10 = W[12];
|
||
|
T23 = T10 * TY;
|
||
|
TX = W[13];
|
||
|
TZ = TX * TY;
|
||
|
}
|
||
|
{
|
||
|
E TL, TM, TQ, TR, TK;
|
||
|
TL = Ip[WS(rs, 1)];
|
||
|
TM = Im[WS(rs, 1)];
|
||
|
TN = TL - TM;
|
||
|
TQ = Rp[WS(rs, 1)];
|
||
|
TR = Rm[WS(rs, 1)];
|
||
|
TS = TQ + TR;
|
||
|
T1b = TL + TM;
|
||
|
T1e = TQ - TR;
|
||
|
TK = W[2];
|
||
|
TO = TK * TN;
|
||
|
T1P = TK * TS;
|
||
|
}
|
||
|
{
|
||
|
E TB, TC, T14, TG, TH, TA;
|
||
|
TB = Ip[WS(rs, 5)];
|
||
|
TC = Im[WS(rs, 5)];
|
||
|
TD = TB - TC;
|
||
|
TG = Rp[WS(rs, 5)];
|
||
|
TH = Rm[WS(rs, 5)];
|
||
|
TI = TG + TH;
|
||
|
T14 = TH - TG;
|
||
|
T17 = TB + TC;
|
||
|
T16 = W[20];
|
||
|
T25 = T16 * T14;
|
||
|
T13 = W[21];
|
||
|
T15 = T13 * T14;
|
||
|
TA = W[18];
|
||
|
TE = TA * TD;
|
||
|
T1N = TA * TI;
|
||
|
}
|
||
|
T12 = FMA(T10, T11, TZ);
|
||
|
T18 = FMA(T16, T17, T15);
|
||
|
T19 = T12 + T18;
|
||
|
T24 = FNMS(TX, T11, T23);
|
||
|
T26 = FNMS(T13, T17, T25);
|
||
|
T2C = T24 + T26;
|
||
|
{
|
||
|
E Tu, T1L, Tq, Tv;
|
||
|
Tq = W[10];
|
||
|
Tu = Tq * Tt;
|
||
|
T1L = Tq * Ty;
|
||
|
Tv = W[11];
|
||
|
Tz = FNMS(Tv, Ty, Tu);
|
||
|
T1M = FMA(Tv, Tt, T1L);
|
||
|
}
|
||
|
{
|
||
|
E T1c, T2A, T1a, T1d;
|
||
|
T1a = W[4];
|
||
|
T1c = T1a * T1b;
|
||
|
T2A = T1a * T1e;
|
||
|
T1d = W[5];
|
||
|
T1f = FNMS(T1d, T1e, T1c);
|
||
|
T2B = FMA(T1d, T1b, T2A);
|
||
|
}
|
||
|
TF = W[19];
|
||
|
TJ = FNMS(TF, TI, TE);
|
||
|
T1O = FMA(TF, TD, T1N);
|
||
|
TP = W[3];
|
||
|
TT = FNMS(TP, TS, TO);
|
||
|
T1Q = FMA(TP, TN, T1P);
|
||
|
TU = TJ + TT;
|
||
|
T1R = T1O + T1Q;
|
||
|
}
|
||
|
{
|
||
|
E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z;
|
||
|
{
|
||
|
E Tp, TV, T2W, T2X;
|
||
|
Tp = Tl + To;
|
||
|
TV = Tz + TU;
|
||
|
TW = Tp - TV;
|
||
|
T2V = TV + Tp;
|
||
|
T2W = T2C - T2B;
|
||
|
T2X = T2H + T2I;
|
||
|
T2Y = T2W - T2X;
|
||
|
T30 = T2W + T2X;
|
||
|
}
|
||
|
{
|
||
|
E T1g, T1C, T1K, T1S;
|
||
|
T1g = T19 + T1f;
|
||
|
T1C = T1m + T1B;
|
||
|
T1D = T1g - T1C;
|
||
|
T1U = T1g + T1C;
|
||
|
T1K = T1E + T1J;
|
||
|
T1S = T1M + T1R;
|
||
|
T1T = T1K + T1S;
|
||
|
T2Z = T1K - T1S;
|
||
|
}
|
||
|
Ip[WS(rs, 3)] = KP500000000 * (TW + T1D);
|
||
|
Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30);
|
||
|
Im[WS(rs, 2)] = KP500000000 * (T1D - TW);
|
||
|
Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30);
|
||
|
Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U);
|
||
|
Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V);
|
||
|
Rp[0] = KP500000000 * (T1T + T1U);
|
||
|
Ip[0] = KP500000000 * (T2V + T2Y);
|
||
|
}
|
||
|
{
|
||
|
E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f;
|
||
|
E T2s;
|
||
|
{
|
||
|
E T1V, T1W, T2D, T2E;
|
||
|
T1V = FNMS(KP500000000, T1J, T1E);
|
||
|
T1W = Ta - Tk;
|
||
|
T1X = FNMS(KP866025403, T1W, T1V);
|
||
|
T2v = FMA(KP866025403, T1W, T1V);
|
||
|
T2D = FMA(KP500000000, T2C, T2B);
|
||
|
T2E = T18 - T12;
|
||
|
T2F = FNMS(KP866025403, T2E, T2D);
|
||
|
T2Q = FMA(KP866025403, T2E, T2D);
|
||
|
}
|
||
|
{
|
||
|
E T2J, T2K, T1Y, T1Z;
|
||
|
T2J = FNMS(KP500000000, T2I, T2H);
|
||
|
T2K = T1s - T1A;
|
||
|
T2L = FNMS(KP866025403, T2K, T2J);
|
||
|
T2R = FMA(KP866025403, T2K, T2J);
|
||
|
T1Y = FNMS(KP500000000, T1R, T1M);
|
||
|
T1Z = TJ - TT;
|
||
|
T20 = FNMS(KP866025403, T1Z, T1Y);
|
||
|
T2w = FMA(KP866025403, T1Z, T1Y);
|
||
|
}
|
||
|
{
|
||
|
E T22, T27, T2h, T2i;
|
||
|
T22 = FNMS(KP500000000, T19, T1f);
|
||
|
T27 = T24 - T26;
|
||
|
T28 = FNMS(KP866025403, T27, T22);
|
||
|
T2t = FMA(KP866025403, T27, T22);
|
||
|
T2h = FNMS(KP500000000, Tl, To);
|
||
|
T2i = T1I - T1G;
|
||
|
T2j = FNMS(KP866025403, T2i, T2h);
|
||
|
T2p = FMA(KP866025403, T2i, T2h);
|
||
|
}
|
||
|
{
|
||
|
E T2k, T2l, T29, T2e;
|
||
|
T2k = FNMS(KP500000000, TU, Tz);
|
||
|
T2l = T1Q - T1O;
|
||
|
T2m = FNMS(KP866025403, T2l, T2k);
|
||
|
T2q = FMA(KP866025403, T2l, T2k);
|
||
|
T29 = FNMS(KP500000000, T1B, T1m);
|
||
|
T2e = T2b - T2d;
|
||
|
T2f = FNMS(KP866025403, T2e, T29);
|
||
|
T2s = FMA(KP866025403, T2e, T29);
|
||
|
}
|
||
|
{
|
||
|
E T21, T2g, T2P, T2S;
|
||
|
T21 = T1X + T20;
|
||
|
T2g = T28 + T2f;
|
||
|
Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g);
|
||
|
Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g);
|
||
|
T2P = T2m + T2j;
|
||
|
T2S = T2Q + T2R;
|
||
|
Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S);
|
||
|
Im[WS(rs, 3)] = KP500000000 * (T2S - T2P);
|
||
|
}
|
||
|
{
|
||
|
E T2n, T2o, T2T, T2U;
|
||
|
T2n = T2j - T2m;
|
||
|
T2o = T2f - T28;
|
||
|
Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o);
|
||
|
Im[0] = KP500000000 * (T2o - T2n);
|
||
|
T2T = T1X - T20;
|
||
|
T2U = T2R - T2Q;
|
||
|
Rm[0] = KP500000000 * (T2T - T2U);
|
||
|
Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U);
|
||
|
}
|
||
|
{
|
||
|
E T2r, T2u, T2N, T2O;
|
||
|
T2r = T2p - T2q;
|
||
|
T2u = T2s - T2t;
|
||
|
Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u);
|
||
|
Im[WS(rs, 4)] = KP500000000 * (T2u - T2r);
|
||
|
T2N = T2v - T2w;
|
||
|
T2O = T2L - T2F;
|
||
|
Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O);
|
||
|
Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O);
|
||
|
}
|
||
|
{
|
||
|
E T2x, T2y, T2z, T2M;
|
||
|
T2x = T2v + T2w;
|
||
|
T2y = T2t + T2s;
|
||
|
Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y);
|
||
|
Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
|
||
|
T2z = T2q + T2p;
|
||
|
T2M = T2F + T2L;
|
||
|
Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M);
|
||
|
Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 96, 46, 46, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cfdft_12) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 142 FP additions, 76 FP multiplications,
|
||
|
* (or, 112 additions, 46 multiplications, 30 fused multiply/add),
|
||
|
* 52 stack variables, 3 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cf.h"
|
||
|
|
||
|
static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DK(KP433012701, +0.433012701892219323381861585376468091735701313);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
|
||
|
E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17;
|
||
|
E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h;
|
||
|
{
|
||
|
E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19;
|
||
|
E T1b;
|
||
|
{
|
||
|
E T2, T3, T6, T7;
|
||
|
Tk = Ip[0];
|
||
|
Tl = Im[0];
|
||
|
T1k = Tk + Tl;
|
||
|
T1m = Rp[0];
|
||
|
T1n = Rm[0];
|
||
|
T1o = T1m - T1n;
|
||
|
T2 = Ip[WS(rs, 2)];
|
||
|
T3 = Im[WS(rs, 2)];
|
||
|
T4 = T2 - T3;
|
||
|
T1f = T2 + T3;
|
||
|
T6 = Rp[WS(rs, 2)];
|
||
|
T7 = Rm[WS(rs, 2)];
|
||
|
T8 = T6 + T7;
|
||
|
T1h = T6 - T7;
|
||
|
{
|
||
|
E Tf, Tg, Tb, Tc;
|
||
|
Tf = Rp[WS(rs, 4)];
|
||
|
Tg = Rm[WS(rs, 4)];
|
||
|
Th = Tf + Tg;
|
||
|
T1c = Tf - Tg;
|
||
|
Tb = Ip[WS(rs, 4)];
|
||
|
Tc = Im[WS(rs, 4)];
|
||
|
Td = Tb - Tc;
|
||
|
T1a = Tb + Tc;
|
||
|
}
|
||
|
}
|
||
|
Tm = Tk - Tl;
|
||
|
T1t = T1m + T1n;
|
||
|
T19 = W[16];
|
||
|
T1b = W[17];
|
||
|
T1d = FNMS(T1b, T1c, T19 * T1a);
|
||
|
T2j = FMA(T19, T1c, T1b * T1a);
|
||
|
{
|
||
|
E T9, T1u, Ti, T1v;
|
||
|
{
|
||
|
E T1, T5, Ta, Te;
|
||
|
T1 = W[6];
|
||
|
T5 = W[7];
|
||
|
T9 = FNMS(T5, T8, T1 * T4);
|
||
|
T1u = FMA(T1, T8, T5 * T4);
|
||
|
Ta = W[14];
|
||
|
Te = W[15];
|
||
|
Ti = FNMS(Te, Th, Ta * Td);
|
||
|
T1v = FMA(Ta, Th, Te * Td);
|
||
|
}
|
||
|
Tj = T9 + Ti;
|
||
|
T1Y = KP433012701 * (T1v - T1u);
|
||
|
T1w = T1u + T1v;
|
||
|
T1G = KP433012701 * (T9 - Ti);
|
||
|
}
|
||
|
{
|
||
|
E T1i, T1S, T1p, T1T;
|
||
|
{
|
||
|
E T1e, T1g, T1j, T1l;
|
||
|
T1e = W[8];
|
||
|
T1g = W[9];
|
||
|
T1i = FNMS(T1g, T1h, T1e * T1f);
|
||
|
T1S = FMA(T1e, T1h, T1g * T1f);
|
||
|
T1j = W[0];
|
||
|
T1l = W[1];
|
||
|
T1p = FNMS(T1l, T1o, T1j * T1k);
|
||
|
T1T = FMA(T1j, T1o, T1l * T1k);
|
||
|
}
|
||
|
T1q = T1i + T1p;
|
||
|
T2q = KP433012701 * (T1i - T1p);
|
||
|
T1U = KP433012701 * (T1S - T1T);
|
||
|
T2k = T1S + T1T;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16;
|
||
|
{
|
||
|
E Tp, Tq, TC, TD;
|
||
|
Tp = Ip[WS(rs, 3)];
|
||
|
Tq = Im[WS(rs, 3)];
|
||
|
Tr = Tp - Tq;
|
||
|
TT = Tp + Tq;
|
||
|
{
|
||
|
E Tt, Tu, Ty, Tz;
|
||
|
Tt = Rp[WS(rs, 3)];
|
||
|
Tu = Rm[WS(rs, 3)];
|
||
|
Tv = Tt + Tu;
|
||
|
TV = Tt - Tu;
|
||
|
Ty = Ip[WS(rs, 5)];
|
||
|
Tz = Im[WS(rs, 5)];
|
||
|
TA = Ty - Tz;
|
||
|
TY = Ty + Tz;
|
||
|
}
|
||
|
TC = Rp[WS(rs, 5)];
|
||
|
TD = Rm[WS(rs, 5)];
|
||
|
TE = TC + TD;
|
||
|
T10 = TC - TD;
|
||
|
{
|
||
|
E TL, TM, TH, TI;
|
||
|
TL = Rp[WS(rs, 1)];
|
||
|
TM = Rm[WS(rs, 1)];
|
||
|
TN = TL + TM;
|
||
|
T14 = TM - TL;
|
||
|
TH = Ip[WS(rs, 1)];
|
||
|
TI = Im[WS(rs, 1)];
|
||
|
TJ = TH - TI;
|
||
|
T16 = TH + TI;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E To, Ts, T13, T15;
|
||
|
To = W[10];
|
||
|
Ts = W[11];
|
||
|
Tw = FNMS(Ts, Tv, To * Tr);
|
||
|
T1y = FMA(To, Tv, Ts * Tr);
|
||
|
T13 = W[5];
|
||
|
T15 = W[4];
|
||
|
T17 = FMA(T13, T14, T15 * T16);
|
||
|
T2g = FNMS(T13, T16, T15 * T14);
|
||
|
}
|
||
|
{
|
||
|
E TF, T1z, TO, T1A;
|
||
|
{
|
||
|
E Tx, TB, TG, TK;
|
||
|
Tx = W[18];
|
||
|
TB = W[19];
|
||
|
TF = FNMS(TB, TE, Tx * TA);
|
||
|
T1z = FMA(Tx, TE, TB * TA);
|
||
|
TG = W[2];
|
||
|
TK = W[3];
|
||
|
TO = FNMS(TK, TN, TG * TJ);
|
||
|
T1A = FMA(TG, TN, TK * TJ);
|
||
|
}
|
||
|
TP = TF + TO;
|
||
|
T21 = KP433012701 * (T1A - T1z);
|
||
|
T1B = T1z + T1A;
|
||
|
T1J = KP433012701 * (TF - TO);
|
||
|
}
|
||
|
{
|
||
|
E TW, T1O, T11, T1N;
|
||
|
{
|
||
|
E TS, TU, TX, TZ;
|
||
|
TS = W[12];
|
||
|
TU = W[13];
|
||
|
TW = FNMS(TU, TV, TS * TT);
|
||
|
T1O = FMA(TS, TV, TU * TT);
|
||
|
TX = W[20];
|
||
|
TZ = W[21];
|
||
|
T11 = FNMS(TZ, T10, TX * TY);
|
||
|
T1N = FMA(TX, T10, TZ * TY);
|
||
|
}
|
||
|
T12 = TW + T11;
|
||
|
T2u = KP433012701 * (T11 - TW);
|
||
|
T1P = KP433012701 * (T1N - T1O);
|
||
|
T2h = T1O + T1N;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n;
|
||
|
{
|
||
|
E Tn, TQ, T2i, T2l;
|
||
|
Tn = Tj + Tm;
|
||
|
TQ = Tw + TP;
|
||
|
TR = Tn - TQ;
|
||
|
T2f = TQ + Tn;
|
||
|
T2i = T2g - T2h;
|
||
|
T2l = T2j + T2k;
|
||
|
T2m = T2i - T2l;
|
||
|
T2o = T2i + T2l;
|
||
|
}
|
||
|
{
|
||
|
E T18, T1r, T1x, T1C;
|
||
|
T18 = T12 + T17;
|
||
|
T1r = T1d + T1q;
|
||
|
T1s = T18 - T1r;
|
||
|
T1E = T18 + T1r;
|
||
|
T1x = T1t + T1w;
|
||
|
T1C = T1y + T1B;
|
||
|
T1D = T1x + T1C;
|
||
|
T2n = T1x - T1C;
|
||
|
}
|
||
|
Ip[WS(rs, 3)] = KP500000000 * (TR + T1s);
|
||
|
Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o);
|
||
|
Im[WS(rs, 2)] = KP500000000 * (T1s - TR);
|
||
|
Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o);
|
||
|
Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E);
|
||
|
Im[WS(rs, 5)] = KP500000000 * (T2m - T2f);
|
||
|
Rp[0] = KP500000000 * (T1D + T1E);
|
||
|
Ip[0] = KP500000000 * (T2f + T2m);
|
||
|
}
|
||
|
{
|
||
|
E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V;
|
||
|
E T28;
|
||
|
{
|
||
|
E T1F, T2r, T2t, T1I;
|
||
|
T1F = FNMS(KP250000000, T1w, KP500000000 * T1t);
|
||
|
T1H = T1F - T1G;
|
||
|
T2b = T1F + T1G;
|
||
|
T2r = FNMS(KP500000000, T2j, KP250000000 * T2k);
|
||
|
T2s = T2q - T2r;
|
||
|
T2B = T2q + T2r;
|
||
|
T2t = FMA(KP250000000, T2h, KP500000000 * T2g);
|
||
|
T2v = T2t - T2u;
|
||
|
T2A = T2u + T2t;
|
||
|
T1I = FNMS(KP250000000, T1B, KP500000000 * T1y);
|
||
|
T1K = T1I - T1J;
|
||
|
T2c = T1I + T1J;
|
||
|
}
|
||
|
{
|
||
|
E T1M, T1X, T20, T1R;
|
||
|
T1M = FNMS(KP250000000, T12, KP500000000 * T17);
|
||
|
T1Q = T1M - T1P;
|
||
|
T29 = T1P + T1M;
|
||
|
T1X = FNMS(KP250000000, Tj, KP500000000 * Tm);
|
||
|
T1Z = T1X - T1Y;
|
||
|
T25 = T1Y + T1X;
|
||
|
T20 = FNMS(KP250000000, TP, KP500000000 * Tw);
|
||
|
T22 = T20 - T21;
|
||
|
T26 = T21 + T20;
|
||
|
T1R = FNMS(KP250000000, T1q, KP500000000 * T1d);
|
||
|
T1V = T1R - T1U;
|
||
|
T28 = T1R + T1U;
|
||
|
}
|
||
|
{
|
||
|
E T1L, T1W, T2p, T2w;
|
||
|
T1L = T1H + T1K;
|
||
|
T1W = T1Q + T1V;
|
||
|
Rp[WS(rs, 2)] = T1L - T1W;
|
||
|
Rm[WS(rs, 3)] = T1L + T1W;
|
||
|
T2p = T22 + T1Z;
|
||
|
T2w = T2s - T2v;
|
||
|
Ip[WS(rs, 2)] = T2p + T2w;
|
||
|
Im[WS(rs, 3)] = T2w - T2p;
|
||
|
}
|
||
|
{
|
||
|
E T23, T24, T2x, T2y;
|
||
|
T23 = T1Z - T22;
|
||
|
T24 = T1V - T1Q;
|
||
|
Ip[WS(rs, 5)] = T23 + T24;
|
||
|
Im[0] = T24 - T23;
|
||
|
T2x = T1H - T1K;
|
||
|
T2y = T2v + T2s;
|
||
|
Rm[0] = T2x - T2y;
|
||
|
Rp[WS(rs, 5)] = T2x + T2y;
|
||
|
}
|
||
|
{
|
||
|
E T27, T2a, T2z, T2C;
|
||
|
T27 = T25 - T26;
|
||
|
T2a = T28 - T29;
|
||
|
Ip[WS(rs, 1)] = T27 + T2a;
|
||
|
Im[WS(rs, 4)] = T2a - T27;
|
||
|
T2z = T2b - T2c;
|
||
|
T2C = T2A - T2B;
|
||
|
Rm[WS(rs, 4)] = T2z - T2C;
|
||
|
Rp[WS(rs, 1)] = T2z + T2C;
|
||
|
}
|
||
|
{
|
||
|
E T2d, T2e, T2D, T2E;
|
||
|
T2d = T2b + T2c;
|
||
|
T2e = T29 + T28;
|
||
|
Rm[WS(rs, 1)] = T2d - T2e;
|
||
|
Rp[WS(rs, 4)] = T2d + T2e;
|
||
|
T2D = T26 + T25;
|
||
|
T2E = T2A + T2B;
|
||
|
Ip[WS(rs, 4)] = T2D + T2E;
|
||
|
Im[WS(rs, 1)] = T2E - T2D;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 112, 46, 30, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cfdft_12) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#endif
|