furnace/extern/fftw/rdft/scalar/r2cb/hc2cb_10.c

514 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
/*
* This function contains 102 FP additions, 72 FP multiplications,
* (or, 48 additions, 18 multiplications, 54 fused multiply/add),
* 47 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J;
E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG;
TF = Ip[0];
TG = Im[WS(rs, 4)];
TH = TF - TG;
T1B = TF + TG;
{
E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r;
{
E Tn, To, Tx, Ty;
Tn = Ip[WS(rs, 4)];
To = Im[0];
Tp = Tn - To;
T1u = Tn + To;
Tx = Ip[WS(rs, 3)];
Ty = Im[WS(rs, 1)];
Tz = Tx - Ty;
T1s = Tx + Ty;
}
{
E Tq, Tr, Tu, Tv;
Tq = Ip[WS(rs, 1)];
Tr = Im[WS(rs, 3)];
Ts = Tq - Tr;
T1v = Tq + Tr;
Tu = Ip[WS(rs, 2)];
Tv = Im[WS(rs, 2)];
Tw = Tu - Tv;
T1r = Tu + Tv;
}
{
E Tt, TA, T1C, T1D;
Tt = Tp - Ts;
TA = Tw - Tz;
TB = FNMS(KP618033988, TA, Tt);
T11 = FMA(KP618033988, Tt, TA);
T1C = T1r - T1s;
T1D = T1u - T1v;
T1E = T1C + T1D;
T1G = T1C - T1D;
}
{
E TI, TJ, T1t, T1w;
TI = Tw + Tz;
TJ = Tp + Ts;
TK = TI + TJ;
TM = TI - TJ;
T1t = T1r + T1s;
T1w = T1u + T1v;
T1x = FMA(KP618033988, T1w, T1t);
T1V = FNMS(KP618033988, T1t, T1w);
}
}
{
E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2;
T1 = Rp[0];
T2 = Rm[WS(rs, 4)];
T3 = T1 + T2;
T1g = T1 - T2;
{
E Tb, Tc, Te, Tf;
Tb = Rp[WS(rs, 4)];
Tc = Rm[0];
Td = Tb + Tc;
T1k = Tb - Tc;
Te = Rm[WS(rs, 3)];
Tf = Rp[WS(rs, 1)];
Tg = Te + Tf;
T1l = Te - Tf;
}
Th = Td + Tg;
T1m = T1k + T1l;
{
E T4, T5, T7, T8;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 2)];
T6 = T4 + T5;
T1h = T4 - T5;
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 3)];
T9 = T7 + T8;
T1i = T7 - T8;
}
Ta = T6 + T9;
T1j = T1h + T1i;
Tl = Ta - Th;
T1I = T1h - T1i;
T1J = T1k - T1l;
TO = Td - Tg;
TP = T6 - T9;
T1p = T1j - T1m;
Ti = Ta + Th;
Tk = FNMS(KP250000000, Ti, T3);
T1n = T1j + T1m;
T1o = FNMS(KP250000000, T1n, T1g);
}
Rp[0] = T3 + Ti;
Rm[0] = TH + TK;
{
E T2d, T29, T2b, T2c, T2e, T2a;
T2d = T1B + T1E;
T2a = T1g + T1n;
T29 = W[8];
T2b = T29 * T2a;
T2c = W[9];
T2e = T2c * T2a;
Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b);
Im[WS(rs, 2)] = FMA(T29, T2d, T2e);
}
{
E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10;
TQ = FNMS(KP618033988, TP, TO);
T16 = FMA(KP618033988, TO, TP);
Tm = FNMS(KP559016994, Tl, Tk);
TC = FMA(KP951056516, TB, Tm);
TU = FNMS(KP951056516, TB, Tm);
TL = FNMS(KP250000000, TK, TH);
TN = FNMS(KP559016994, TM, TL);
T15 = FMA(KP559016994, TM, TL);
T10 = FMA(KP559016994, Tl, Tk);
T12 = FMA(KP951056516, T11, T10);
T1a = FNMS(KP951056516, T11, T10);
{
E TR, TE, TS, Tj, TD;
TR = FNMS(KP951056516, TQ, TN);
TE = W[3];
TS = TE * TC;
Tj = W[2];
TD = Tj * TC;
Rp[WS(rs, 1)] = FNMS(TE, TR, TD);
Rm[WS(rs, 1)] = FMA(Tj, TR, TS);
}
{
E T1d, T1c, T1e, T19, T1b;
T1d = FMA(KP951056516, T16, T15);
T1c = W[11];
T1e = T1c * T1a;
T19 = W[10];
T1b = T19 * T1a;
Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b);
Rm[WS(rs, 3)] = FMA(T19, T1d, T1e);
}
{
E TX, TW, TY, TT, TV;
TX = FMA(KP951056516, TQ, TN);
TW = W[15];
TY = TW * TU;
TT = W[14];
TV = TT * TU;
Rp[WS(rs, 4)] = FNMS(TW, TX, TV);
Rm[WS(rs, 4)] = FMA(TT, TX, TY);
}
{
E T17, T14, T18, TZ, T13;
T17 = FNMS(KP951056516, T16, T15);
T14 = W[7];
T18 = T14 * T12;
TZ = W[6];
T13 = TZ * T12;
Rp[WS(rs, 2)] = FNMS(T14, T17, T13);
Rm[WS(rs, 2)] = FMA(TZ, T17, T18);
}
}
{
E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U;
T1K = FMA(KP618033988, T1J, T1I);
T20 = FNMS(KP618033988, T1I, T1J);
T1q = FMA(KP559016994, T1p, T1o);
T1y = FNMS(KP951056516, T1x, T1q);
T1O = FMA(KP951056516, T1x, T1q);
T1F = FNMS(KP250000000, T1E, T1B);
T1H = FMA(KP559016994, T1G, T1F);
T1Z = FNMS(KP559016994, T1G, T1F);
T1U = FNMS(KP559016994, T1p, T1o);
T1W = FNMS(KP951056516, T1V, T1U);
T24 = FMA(KP951056516, T1V, T1U);
{
E T1L, T1A, T1M, T1f, T1z;
T1L = FMA(KP951056516, T1K, T1H);
T1A = W[1];
T1M = T1A * T1y;
T1f = W[0];
T1z = T1f * T1y;
Ip[0] = FNMS(T1A, T1L, T1z);
Im[0] = FMA(T1f, T1L, T1M);
}
{
E T27, T26, T28, T23, T25;
T27 = FNMS(KP951056516, T20, T1Z);
T26 = W[13];
T28 = T26 * T24;
T23 = W[12];
T25 = T23 * T24;
Ip[WS(rs, 3)] = FNMS(T26, T27, T25);
Im[WS(rs, 3)] = FMA(T23, T27, T28);
}
{
E T1R, T1Q, T1S, T1N, T1P;
T1R = FNMS(KP951056516, T1K, T1H);
T1Q = W[17];
T1S = T1Q * T1O;
T1N = W[16];
T1P = T1N * T1O;
Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P);
Im[WS(rs, 4)] = FMA(T1N, T1R, T1S);
}
{
E T21, T1Y, T22, T1T, T1X;
T21 = FMA(KP951056516, T20, T1Z);
T1Y = W[5];
T22 = T1Y * T1W;
T1T = W[4];
T1X = T1T * T1W;
Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X);
Im[WS(rs, 1)] = FMA(T1T, T21, T22);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 48, 18, 54, 0 } };
void X(codelet_hc2cb_10) (planner *p) {
X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
/*
* This function contains 102 FP additions, 60 FP multiplications,
* (or, 72 additions, 30 multiplications, 30 fused multiply/add),
* 39 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w;
E T1v, T1p, T1E, TM, TO;
{
E T1, T2, TH, TI;
T1 = Rp[0];
T2 = Rm[WS(rs, 4)];
T3 = T1 + T2;
T18 = T1 - T2;
TH = Ip[0];
TI = Im[WS(rs, 4)];
TJ = TH - TI;
T1i = TH + TI;
}
{
E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
{
E T4, T5, Te, Tf;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 2)];
T6 = T4 + T5;
T19 = T4 - T5;
Te = Rm[WS(rs, 3)];
Tf = Rp[WS(rs, 1)];
Tg = Te + Tf;
T1d = Te - Tf;
}
{
E T7, T8, Tb, Tc;
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 3)];
T9 = T7 + T8;
T1a = T7 - T8;
Tb = Rp[WS(rs, 4)];
Tc = Rm[0];
Td = Tb + Tc;
T1c = Tb - Tc;
}
TE = T6 - T9;
TF = Td - Tg;
T1B = T1c - T1d;
T1A = T19 - T1a;
{
E T1b, T1e, Ta, Th;
T1b = T19 + T1a;
T1e = T1c + T1d;
T1f = T1b + T1e;
T1t = KP559016994 * (T1b - T1e);
Ta = T6 + T9;
Th = Td + Tg;
Ti = Ta + Th;
Tl = KP559016994 * (Ta - Th);
}
}
{
E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
{
E Tn, To, Tx, Ty;
Tn = Ip[WS(rs, 2)];
To = Im[WS(rs, 2)];
Tp = Tn - To;
T1j = Tn + To;
Tx = Ip[WS(rs, 1)];
Ty = Im[WS(rs, 3)];
Tz = Tx - Ty;
T1n = Tx + Ty;
}
{
E Tq, Tr, Tu, Tv;
Tq = Ip[WS(rs, 3)];
Tr = Im[WS(rs, 1)];
Ts = Tq - Tr;
T1k = Tq + Tr;
Tu = Ip[WS(rs, 4)];
Tv = Im[0];
Tw = Tu - Tv;
T1m = Tu + Tv;
}
Tt = Tp - Ts;
TA = Tw - Tz;
T1w = T1m + T1n;
T1v = T1j + T1k;
{
E T1l, T1o, TK, TL;
T1l = T1j - T1k;
T1o = T1m - T1n;
T1p = T1l + T1o;
T1E = KP559016994 * (T1l - T1o);
TK = Tp + Ts;
TL = Tw + Tz;
TM = TK + TL;
TO = KP559016994 * (TK - TL);
}
}
Rp[0] = T3 + Ti;
Rm[0] = TJ + TM;
{
E T1g, T1q, T17, T1h;
T1g = T18 + T1f;
T1q = T1i + T1p;
T17 = W[8];
T1h = W[9];
Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g);
Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q);
}
{
E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
TB = FNMS(KP951056516, TA, KP587785252 * Tt);
TG = FNMS(KP951056516, TF, KP587785252 * TE);
T11 = FMA(KP951056516, TE, KP587785252 * TF);
TX = FMA(KP951056516, Tt, KP587785252 * TA);
TN = FNMS(KP250000000, TM, TJ);
TP = TN - TO;
T10 = TO + TN;
Tk = FNMS(KP250000000, Ti, T3);
Tm = Tk - Tl;
TW = Tl + Tk;
{
E TC, TQ, Tj, TD;
TC = Tm - TB;
TQ = TG + TP;
Tj = W[2];
TD = W[3];
Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC);
Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ);
}
{
E T14, T16, T13, T15;
T14 = TW - TX;
T16 = T11 + T10;
T13 = W[10];
T15 = W[11];
Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14);
Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16);
}
{
E TS, TU, TR, TT;
TS = Tm + TB;
TU = TP - TG;
TR = W[14];
TT = W[15];
Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS);
Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU);
}
{
E TY, T12, TV, TZ;
TY = TW + TX;
T12 = T10 - T11;
TV = W[6];
TZ = W[7];
Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY);
Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12);
}
}
{
E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
T1D = FNMS(KP250000000, T1p, T1i);
T1F = T1D - T1E;
T1R = T1E + T1D;
T1s = FNMS(KP250000000, T1f, T18);
T1u = T1s - T1t;
T1M = T1t + T1s;
{
E T1y, T1G, T1r, T1z;
T1y = T1u - T1x;
T1G = T1C + T1F;
T1r = W[12];
T1z = W[13];
Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y);
Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y);
}
{
E T1U, T1W, T1T, T1V;
T1U = T1M + T1N;
T1W = T1R - T1Q;
T1T = W[16];
T1V = W[17];
Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U);
Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U);
}
{
E T1I, T1K, T1H, T1J;
T1I = T1u + T1x;
T1K = T1F - T1C;
T1H = W[4];
T1J = W[5];
Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I);
Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I);
}
{
E T1O, T1S, T1L, T1P;
T1O = T1M - T1N;
T1S = T1Q + T1R;
T1L = W[0];
T1P = W[1];
Ip[0] = FNMS(T1P, T1S, T1L * T1O);
Im[0] = FMA(T1L, T1S, T1P * T1O);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 72, 30, 30, 0 } };
void X(codelet_hc2cb_10) (planner *p) {
X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
}
#endif