mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-08 22:05:05 +00:00
514 lines
13 KiB
C
514 lines
13 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 102 FP additions, 72 FP multiplications,
|
||
|
* (or, 48 additions, 18 multiplications, 54 fused multiply/add),
|
||
|
* 47 stack variables, 4 constants, and 40 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
|
||
|
E TH, T1B, TB, T11, T1E, T1G, TK, TM, T1x, T1V, T3, T1g, Tl, T1I, T1J;
|
||
|
E TO, TP, T1p, Ti, Tk, T1n, T1o, TF, TG;
|
||
|
TF = Ip[0];
|
||
|
TG = Im[WS(rs, 4)];
|
||
|
TH = TF - TG;
|
||
|
T1B = TF + TG;
|
||
|
{
|
||
|
E Tp, T1u, Tz, T1s, Ts, T1v, Tw, T1r;
|
||
|
{
|
||
|
E Tn, To, Tx, Ty;
|
||
|
Tn = Ip[WS(rs, 4)];
|
||
|
To = Im[0];
|
||
|
Tp = Tn - To;
|
||
|
T1u = Tn + To;
|
||
|
Tx = Ip[WS(rs, 3)];
|
||
|
Ty = Im[WS(rs, 1)];
|
||
|
Tz = Tx - Ty;
|
||
|
T1s = Tx + Ty;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, Tu, Tv;
|
||
|
Tq = Ip[WS(rs, 1)];
|
||
|
Tr = Im[WS(rs, 3)];
|
||
|
Ts = Tq - Tr;
|
||
|
T1v = Tq + Tr;
|
||
|
Tu = Ip[WS(rs, 2)];
|
||
|
Tv = Im[WS(rs, 2)];
|
||
|
Tw = Tu - Tv;
|
||
|
T1r = Tu + Tv;
|
||
|
}
|
||
|
{
|
||
|
E Tt, TA, T1C, T1D;
|
||
|
Tt = Tp - Ts;
|
||
|
TA = Tw - Tz;
|
||
|
TB = FNMS(KP618033988, TA, Tt);
|
||
|
T11 = FMA(KP618033988, Tt, TA);
|
||
|
T1C = T1r - T1s;
|
||
|
T1D = T1u - T1v;
|
||
|
T1E = T1C + T1D;
|
||
|
T1G = T1C - T1D;
|
||
|
}
|
||
|
{
|
||
|
E TI, TJ, T1t, T1w;
|
||
|
TI = Tw + Tz;
|
||
|
TJ = Tp + Ts;
|
||
|
TK = TI + TJ;
|
||
|
TM = TI - TJ;
|
||
|
T1t = T1r + T1s;
|
||
|
T1w = T1u + T1v;
|
||
|
T1x = FMA(KP618033988, T1w, T1t);
|
||
|
T1V = FNMS(KP618033988, T1t, T1w);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Td, T1k, Tg, T1l, Th, T1m, T6, T1h, T9, T1i, Ta, T1j, T1, T2;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 4)];
|
||
|
T3 = T1 + T2;
|
||
|
T1g = T1 - T2;
|
||
|
{
|
||
|
E Tb, Tc, Te, Tf;
|
||
|
Tb = Rp[WS(rs, 4)];
|
||
|
Tc = Rm[0];
|
||
|
Td = Tb + Tc;
|
||
|
T1k = Tb - Tc;
|
||
|
Te = Rm[WS(rs, 3)];
|
||
|
Tf = Rp[WS(rs, 1)];
|
||
|
Tg = Te + Tf;
|
||
|
T1l = Te - Tf;
|
||
|
}
|
||
|
Th = Td + Tg;
|
||
|
T1m = T1k + T1l;
|
||
|
{
|
||
|
E T4, T5, T7, T8;
|
||
|
T4 = Rp[WS(rs, 2)];
|
||
|
T5 = Rm[WS(rs, 2)];
|
||
|
T6 = T4 + T5;
|
||
|
T1h = T4 - T5;
|
||
|
T7 = Rm[WS(rs, 1)];
|
||
|
T8 = Rp[WS(rs, 3)];
|
||
|
T9 = T7 + T8;
|
||
|
T1i = T7 - T8;
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
T1j = T1h + T1i;
|
||
|
Tl = Ta - Th;
|
||
|
T1I = T1h - T1i;
|
||
|
T1J = T1k - T1l;
|
||
|
TO = Td - Tg;
|
||
|
TP = T6 - T9;
|
||
|
T1p = T1j - T1m;
|
||
|
Ti = Ta + Th;
|
||
|
Tk = FNMS(KP250000000, Ti, T3);
|
||
|
T1n = T1j + T1m;
|
||
|
T1o = FNMS(KP250000000, T1n, T1g);
|
||
|
}
|
||
|
Rp[0] = T3 + Ti;
|
||
|
Rm[0] = TH + TK;
|
||
|
{
|
||
|
E T2d, T29, T2b, T2c, T2e, T2a;
|
||
|
T2d = T1B + T1E;
|
||
|
T2a = T1g + T1n;
|
||
|
T29 = W[8];
|
||
|
T2b = T29 * T2a;
|
||
|
T2c = W[9];
|
||
|
T2e = T2c * T2a;
|
||
|
Ip[WS(rs, 2)] = FNMS(T2c, T2d, T2b);
|
||
|
Im[WS(rs, 2)] = FMA(T29, T2d, T2e);
|
||
|
}
|
||
|
{
|
||
|
E TQ, T16, TC, TU, TN, T15, T12, T1a, Tm, TL, T10;
|
||
|
TQ = FNMS(KP618033988, TP, TO);
|
||
|
T16 = FMA(KP618033988, TO, TP);
|
||
|
Tm = FNMS(KP559016994, Tl, Tk);
|
||
|
TC = FMA(KP951056516, TB, Tm);
|
||
|
TU = FNMS(KP951056516, TB, Tm);
|
||
|
TL = FNMS(KP250000000, TK, TH);
|
||
|
TN = FNMS(KP559016994, TM, TL);
|
||
|
T15 = FMA(KP559016994, TM, TL);
|
||
|
T10 = FMA(KP559016994, Tl, Tk);
|
||
|
T12 = FMA(KP951056516, T11, T10);
|
||
|
T1a = FNMS(KP951056516, T11, T10);
|
||
|
{
|
||
|
E TR, TE, TS, Tj, TD;
|
||
|
TR = FNMS(KP951056516, TQ, TN);
|
||
|
TE = W[3];
|
||
|
TS = TE * TC;
|
||
|
Tj = W[2];
|
||
|
TD = Tj * TC;
|
||
|
Rp[WS(rs, 1)] = FNMS(TE, TR, TD);
|
||
|
Rm[WS(rs, 1)] = FMA(Tj, TR, TS);
|
||
|
}
|
||
|
{
|
||
|
E T1d, T1c, T1e, T19, T1b;
|
||
|
T1d = FMA(KP951056516, T16, T15);
|
||
|
T1c = W[11];
|
||
|
T1e = T1c * T1a;
|
||
|
T19 = W[10];
|
||
|
T1b = T19 * T1a;
|
||
|
Rp[WS(rs, 3)] = FNMS(T1c, T1d, T1b);
|
||
|
Rm[WS(rs, 3)] = FMA(T19, T1d, T1e);
|
||
|
}
|
||
|
{
|
||
|
E TX, TW, TY, TT, TV;
|
||
|
TX = FMA(KP951056516, TQ, TN);
|
||
|
TW = W[15];
|
||
|
TY = TW * TU;
|
||
|
TT = W[14];
|
||
|
TV = TT * TU;
|
||
|
Rp[WS(rs, 4)] = FNMS(TW, TX, TV);
|
||
|
Rm[WS(rs, 4)] = FMA(TT, TX, TY);
|
||
|
}
|
||
|
{
|
||
|
E T17, T14, T18, TZ, T13;
|
||
|
T17 = FNMS(KP951056516, T16, T15);
|
||
|
T14 = W[7];
|
||
|
T18 = T14 * T12;
|
||
|
TZ = W[6];
|
||
|
T13 = TZ * T12;
|
||
|
Rp[WS(rs, 2)] = FNMS(T14, T17, T13);
|
||
|
Rm[WS(rs, 2)] = FMA(TZ, T17, T18);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1K, T20, T1y, T1O, T1H, T1Z, T1W, T24, T1q, T1F, T1U;
|
||
|
T1K = FMA(KP618033988, T1J, T1I);
|
||
|
T20 = FNMS(KP618033988, T1I, T1J);
|
||
|
T1q = FMA(KP559016994, T1p, T1o);
|
||
|
T1y = FNMS(KP951056516, T1x, T1q);
|
||
|
T1O = FMA(KP951056516, T1x, T1q);
|
||
|
T1F = FNMS(KP250000000, T1E, T1B);
|
||
|
T1H = FMA(KP559016994, T1G, T1F);
|
||
|
T1Z = FNMS(KP559016994, T1G, T1F);
|
||
|
T1U = FNMS(KP559016994, T1p, T1o);
|
||
|
T1W = FNMS(KP951056516, T1V, T1U);
|
||
|
T24 = FMA(KP951056516, T1V, T1U);
|
||
|
{
|
||
|
E T1L, T1A, T1M, T1f, T1z;
|
||
|
T1L = FMA(KP951056516, T1K, T1H);
|
||
|
T1A = W[1];
|
||
|
T1M = T1A * T1y;
|
||
|
T1f = W[0];
|
||
|
T1z = T1f * T1y;
|
||
|
Ip[0] = FNMS(T1A, T1L, T1z);
|
||
|
Im[0] = FMA(T1f, T1L, T1M);
|
||
|
}
|
||
|
{
|
||
|
E T27, T26, T28, T23, T25;
|
||
|
T27 = FNMS(KP951056516, T20, T1Z);
|
||
|
T26 = W[13];
|
||
|
T28 = T26 * T24;
|
||
|
T23 = W[12];
|
||
|
T25 = T23 * T24;
|
||
|
Ip[WS(rs, 3)] = FNMS(T26, T27, T25);
|
||
|
Im[WS(rs, 3)] = FMA(T23, T27, T28);
|
||
|
}
|
||
|
{
|
||
|
E T1R, T1Q, T1S, T1N, T1P;
|
||
|
T1R = FNMS(KP951056516, T1K, T1H);
|
||
|
T1Q = W[17];
|
||
|
T1S = T1Q * T1O;
|
||
|
T1N = W[16];
|
||
|
T1P = T1N * T1O;
|
||
|
Ip[WS(rs, 4)] = FNMS(T1Q, T1R, T1P);
|
||
|
Im[WS(rs, 4)] = FMA(T1N, T1R, T1S);
|
||
|
}
|
||
|
{
|
||
|
E T21, T1Y, T22, T1T, T1X;
|
||
|
T21 = FMA(KP951056516, T20, T1Z);
|
||
|
T1Y = W[5];
|
||
|
T22 = T1Y * T1W;
|
||
|
T1T = W[4];
|
||
|
T1X = T1T * T1W;
|
||
|
Ip[WS(rs, 1)] = FNMS(T1Y, T21, T1X);
|
||
|
Im[WS(rs, 1)] = FMA(T1T, T21, T22);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 10 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 48, 18, 54, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_10) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cb_10 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 102 FP additions, 60 FP multiplications,
|
||
|
* (or, 72 additions, 30 multiplications, 30 fused multiply/add),
|
||
|
* 39 stack variables, 4 constants, and 40 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
|
||
|
E T3, T18, TJ, T1i, TE, TF, T1B, T1A, T1f, T1t, Ti, Tl, Tt, TA, T1w;
|
||
|
E T1v, T1p, T1E, TM, TO;
|
||
|
{
|
||
|
E T1, T2, TH, TI;
|
||
|
T1 = Rp[0];
|
||
|
T2 = Rm[WS(rs, 4)];
|
||
|
T3 = T1 + T2;
|
||
|
T18 = T1 - T2;
|
||
|
TH = Ip[0];
|
||
|
TI = Im[WS(rs, 4)];
|
||
|
TJ = TH - TI;
|
||
|
T1i = TH + TI;
|
||
|
}
|
||
|
{
|
||
|
E T6, T19, Tg, T1d, T9, T1a, Td, T1c;
|
||
|
{
|
||
|
E T4, T5, Te, Tf;
|
||
|
T4 = Rp[WS(rs, 2)];
|
||
|
T5 = Rm[WS(rs, 2)];
|
||
|
T6 = T4 + T5;
|
||
|
T19 = T4 - T5;
|
||
|
Te = Rm[WS(rs, 3)];
|
||
|
Tf = Rp[WS(rs, 1)];
|
||
|
Tg = Te + Tf;
|
||
|
T1d = Te - Tf;
|
||
|
}
|
||
|
{
|
||
|
E T7, T8, Tb, Tc;
|
||
|
T7 = Rm[WS(rs, 1)];
|
||
|
T8 = Rp[WS(rs, 3)];
|
||
|
T9 = T7 + T8;
|
||
|
T1a = T7 - T8;
|
||
|
Tb = Rp[WS(rs, 4)];
|
||
|
Tc = Rm[0];
|
||
|
Td = Tb + Tc;
|
||
|
T1c = Tb - Tc;
|
||
|
}
|
||
|
TE = T6 - T9;
|
||
|
TF = Td - Tg;
|
||
|
T1B = T1c - T1d;
|
||
|
T1A = T19 - T1a;
|
||
|
{
|
||
|
E T1b, T1e, Ta, Th;
|
||
|
T1b = T19 + T1a;
|
||
|
T1e = T1c + T1d;
|
||
|
T1f = T1b + T1e;
|
||
|
T1t = KP559016994 * (T1b - T1e);
|
||
|
Ta = T6 + T9;
|
||
|
Th = Td + Tg;
|
||
|
Ti = Ta + Th;
|
||
|
Tl = KP559016994 * (Ta - Th);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tp, T1j, Tz, T1n, Ts, T1k, Tw, T1m;
|
||
|
{
|
||
|
E Tn, To, Tx, Ty;
|
||
|
Tn = Ip[WS(rs, 2)];
|
||
|
To = Im[WS(rs, 2)];
|
||
|
Tp = Tn - To;
|
||
|
T1j = Tn + To;
|
||
|
Tx = Ip[WS(rs, 1)];
|
||
|
Ty = Im[WS(rs, 3)];
|
||
|
Tz = Tx - Ty;
|
||
|
T1n = Tx + Ty;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Tr, Tu, Tv;
|
||
|
Tq = Ip[WS(rs, 3)];
|
||
|
Tr = Im[WS(rs, 1)];
|
||
|
Ts = Tq - Tr;
|
||
|
T1k = Tq + Tr;
|
||
|
Tu = Ip[WS(rs, 4)];
|
||
|
Tv = Im[0];
|
||
|
Tw = Tu - Tv;
|
||
|
T1m = Tu + Tv;
|
||
|
}
|
||
|
Tt = Tp - Ts;
|
||
|
TA = Tw - Tz;
|
||
|
T1w = T1m + T1n;
|
||
|
T1v = T1j + T1k;
|
||
|
{
|
||
|
E T1l, T1o, TK, TL;
|
||
|
T1l = T1j - T1k;
|
||
|
T1o = T1m - T1n;
|
||
|
T1p = T1l + T1o;
|
||
|
T1E = KP559016994 * (T1l - T1o);
|
||
|
TK = Tp + Ts;
|
||
|
TL = Tw + Tz;
|
||
|
TM = TK + TL;
|
||
|
TO = KP559016994 * (TK - TL);
|
||
|
}
|
||
|
}
|
||
|
Rp[0] = T3 + Ti;
|
||
|
Rm[0] = TJ + TM;
|
||
|
{
|
||
|
E T1g, T1q, T17, T1h;
|
||
|
T1g = T18 + T1f;
|
||
|
T1q = T1i + T1p;
|
||
|
T17 = W[8];
|
||
|
T1h = W[9];
|
||
|
Ip[WS(rs, 2)] = FNMS(T1h, T1q, T17 * T1g);
|
||
|
Im[WS(rs, 2)] = FMA(T1h, T1g, T17 * T1q);
|
||
|
}
|
||
|
{
|
||
|
E TB, TG, T11, TX, TP, T10, Tm, TW, TN, Tk;
|
||
|
TB = FNMS(KP951056516, TA, KP587785252 * Tt);
|
||
|
TG = FNMS(KP951056516, TF, KP587785252 * TE);
|
||
|
T11 = FMA(KP951056516, TE, KP587785252 * TF);
|
||
|
TX = FMA(KP951056516, Tt, KP587785252 * TA);
|
||
|
TN = FNMS(KP250000000, TM, TJ);
|
||
|
TP = TN - TO;
|
||
|
T10 = TO + TN;
|
||
|
Tk = FNMS(KP250000000, Ti, T3);
|
||
|
Tm = Tk - Tl;
|
||
|
TW = Tl + Tk;
|
||
|
{
|
||
|
E TC, TQ, Tj, TD;
|
||
|
TC = Tm - TB;
|
||
|
TQ = TG + TP;
|
||
|
Tj = W[2];
|
||
|
TD = W[3];
|
||
|
Rp[WS(rs, 1)] = FNMS(TD, TQ, Tj * TC);
|
||
|
Rm[WS(rs, 1)] = FMA(TD, TC, Tj * TQ);
|
||
|
}
|
||
|
{
|
||
|
E T14, T16, T13, T15;
|
||
|
T14 = TW - TX;
|
||
|
T16 = T11 + T10;
|
||
|
T13 = W[10];
|
||
|
T15 = W[11];
|
||
|
Rp[WS(rs, 3)] = FNMS(T15, T16, T13 * T14);
|
||
|
Rm[WS(rs, 3)] = FMA(T15, T14, T13 * T16);
|
||
|
}
|
||
|
{
|
||
|
E TS, TU, TR, TT;
|
||
|
TS = Tm + TB;
|
||
|
TU = TP - TG;
|
||
|
TR = W[14];
|
||
|
TT = W[15];
|
||
|
Rp[WS(rs, 4)] = FNMS(TT, TU, TR * TS);
|
||
|
Rm[WS(rs, 4)] = FMA(TT, TS, TR * TU);
|
||
|
}
|
||
|
{
|
||
|
E TY, T12, TV, TZ;
|
||
|
TY = TW + TX;
|
||
|
T12 = T10 - T11;
|
||
|
TV = W[6];
|
||
|
TZ = W[7];
|
||
|
Rp[WS(rs, 2)] = FNMS(TZ, T12, TV * TY);
|
||
|
Rm[WS(rs, 2)] = FMA(TZ, TY, TV * T12);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1x, T1C, T1Q, T1N, T1F, T1R, T1u, T1M, T1D, T1s;
|
||
|
T1x = FNMS(KP951056516, T1w, KP587785252 * T1v);
|
||
|
T1C = FNMS(KP951056516, T1B, KP587785252 * T1A);
|
||
|
T1Q = FMA(KP951056516, T1A, KP587785252 * T1B);
|
||
|
T1N = FMA(KP951056516, T1v, KP587785252 * T1w);
|
||
|
T1D = FNMS(KP250000000, T1p, T1i);
|
||
|
T1F = T1D - T1E;
|
||
|
T1R = T1E + T1D;
|
||
|
T1s = FNMS(KP250000000, T1f, T18);
|
||
|
T1u = T1s - T1t;
|
||
|
T1M = T1t + T1s;
|
||
|
{
|
||
|
E T1y, T1G, T1r, T1z;
|
||
|
T1y = T1u - T1x;
|
||
|
T1G = T1C + T1F;
|
||
|
T1r = W[12];
|
||
|
T1z = W[13];
|
||
|
Ip[WS(rs, 3)] = FNMS(T1z, T1G, T1r * T1y);
|
||
|
Im[WS(rs, 3)] = FMA(T1r, T1G, T1z * T1y);
|
||
|
}
|
||
|
{
|
||
|
E T1U, T1W, T1T, T1V;
|
||
|
T1U = T1M + T1N;
|
||
|
T1W = T1R - T1Q;
|
||
|
T1T = W[16];
|
||
|
T1V = W[17];
|
||
|
Ip[WS(rs, 4)] = FNMS(T1V, T1W, T1T * T1U);
|
||
|
Im[WS(rs, 4)] = FMA(T1T, T1W, T1V * T1U);
|
||
|
}
|
||
|
{
|
||
|
E T1I, T1K, T1H, T1J;
|
||
|
T1I = T1u + T1x;
|
||
|
T1K = T1F - T1C;
|
||
|
T1H = W[4];
|
||
|
T1J = W[5];
|
||
|
Ip[WS(rs, 1)] = FNMS(T1J, T1K, T1H * T1I);
|
||
|
Im[WS(rs, 1)] = FMA(T1H, T1K, T1J * T1I);
|
||
|
}
|
||
|
{
|
||
|
E T1O, T1S, T1L, T1P;
|
||
|
T1O = T1M - T1N;
|
||
|
T1S = T1Q + T1R;
|
||
|
T1L = W[0];
|
||
|
T1P = W[1];
|
||
|
Ip[0] = FNMS(T1P, T1S, T1L * T1O);
|
||
|
Im[0] = FMA(T1L, T1S, T1P * T1O);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 10 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 10, "hc2cb_10", twinstr, &GENUS, { 72, 30, 30, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_10) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_10, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#endif
|