mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-08 22:05:05 +00:00
441 lines
14 KiB
C
441 lines
14 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:45:55 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */
|
||
|
|
||
|
/*
|
||
|
* This function contains 98 FP additions, 86 FP multiplications,
|
||
|
* (or, 64 additions, 52 multiplications, 34 fused multiply/add),
|
||
|
* 51 stack variables, 3 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/t3b.h"
|
||
|
|
||
|
static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ii;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
||
|
V T2, T8, T9, Tx, Tu, TR, T3, T4, TN, TU, Tc, Tm, Ty, TE, Tp;
|
||
|
T2 = LDW(&(W[0]));
|
||
|
T8 = LDW(&(W[TWVL * 2]));
|
||
|
T9 = VZMUL(T2, T8);
|
||
|
Tx = VZMULJ(T2, T8);
|
||
|
Tu = LDW(&(W[TWVL * 6]));
|
||
|
TR = VZMULJ(T2, Tu);
|
||
|
T3 = LDW(&(W[TWVL * 4]));
|
||
|
T4 = VZMULJ(T2, T3);
|
||
|
TN = VZMUL(T2, T3);
|
||
|
TU = VZMULJ(T8, T3);
|
||
|
Tc = VZMUL(T8, T3);
|
||
|
Tm = VZMULJ(T9, T3);
|
||
|
Ty = VZMULJ(Tx, T3);
|
||
|
TE = VZMUL(Tx, T3);
|
||
|
Tp = VZMUL(T9, T3);
|
||
|
{
|
||
|
V T7, T1b, Tf, T1o, TQ, TX, T1e, T1p, Tl, Ts, Tt, T1i, T1r, TB, TH;
|
||
|
V TI, T1l, T1s, T1, T6, T5;
|
||
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
||
|
T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
||
|
T6 = VZMUL(T4, T5);
|
||
|
T7 = VADD(T1, T6);
|
||
|
T1b = VSUB(T1, T6);
|
||
|
{
|
||
|
V Tb, Te, Ta, Td;
|
||
|
Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
Tb = VZMUL(T9, Ta);
|
||
|
Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
||
|
Te = VZMUL(Tc, Td);
|
||
|
Tf = VADD(Tb, Te);
|
||
|
T1o = VSUB(Tb, Te);
|
||
|
}
|
||
|
{
|
||
|
V TM, TW, TP, TT, T1c, T1d;
|
||
|
{
|
||
|
V TL, TV, TO, TS;
|
||
|
TL = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
TM = VZMUL(Tx, TL);
|
||
|
TV = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
||
|
TW = VZMUL(TU, TV);
|
||
|
TO = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
||
|
TP = VZMUL(TN, TO);
|
||
|
TS = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
||
|
TT = VZMUL(TR, TS);
|
||
|
}
|
||
|
TQ = VADD(TM, TP);
|
||
|
TX = VADD(TT, TW);
|
||
|
T1c = VSUB(TM, TP);
|
||
|
T1d = VSUB(TT, TW);
|
||
|
T1e = VADD(T1c, T1d);
|
||
|
T1p = VSUB(T1c, T1d);
|
||
|
}
|
||
|
{
|
||
|
V Ti, Tr, Tk, To, T1g, T1h;
|
||
|
{
|
||
|
V Th, Tq, Tj, Tn;
|
||
|
Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
Ti = VZMUL(T2, Th);
|
||
|
Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tr = VZMUL(Tp, Tq);
|
||
|
Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tk = VZMUL(T3, Tj);
|
||
|
Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
||
|
To = VZMUL(Tm, Tn);
|
||
|
}
|
||
|
Tl = VADD(Ti, Tk);
|
||
|
Ts = VADD(To, Tr);
|
||
|
Tt = VSUB(Tl, Ts);
|
||
|
T1g = VSUB(Ti, Tk);
|
||
|
T1h = VSUB(To, Tr);
|
||
|
T1i = VFNMS(LDK(KP414213562), T1h, T1g);
|
||
|
T1r = VFMA(LDK(KP414213562), T1g, T1h);
|
||
|
}
|
||
|
{
|
||
|
V Tw, TG, TA, TD, T1j, T1k;
|
||
|
{
|
||
|
V Tv, TF, Tz, TC;
|
||
|
Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tw = VZMUL(Tu, Tv);
|
||
|
TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
||
|
TG = VZMUL(TE, TF);
|
||
|
Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
||
|
TA = VZMUL(Ty, Tz);
|
||
|
TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
TD = VZMUL(T8, TC);
|
||
|
}
|
||
|
TB = VADD(Tw, TA);
|
||
|
TH = VADD(TD, TG);
|
||
|
TI = VSUB(TB, TH);
|
||
|
T1j = VSUB(Tw, TA);
|
||
|
T1k = VSUB(TG, TD);
|
||
|
T1l = VFNMS(LDK(KP414213562), T1k, T1j);
|
||
|
T1s = VFMA(LDK(KP414213562), T1j, T1k);
|
||
|
}
|
||
|
{
|
||
|
V TK, T11, T10, T12;
|
||
|
{
|
||
|
V Tg, TJ, TY, TZ;
|
||
|
Tg = VSUB(T7, Tf);
|
||
|
TJ = VADD(Tt, TI);
|
||
|
TK = VFNMS(LDK(KP707106781), TJ, Tg);
|
||
|
T11 = VFMA(LDK(KP707106781), TJ, Tg);
|
||
|
TY = VSUB(TQ, TX);
|
||
|
TZ = VSUB(Tt, TI);
|
||
|
T10 = VFNMS(LDK(KP707106781), TZ, TY);
|
||
|
T12 = VFMA(LDK(KP707106781), TZ, TY);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V T1z, T1D, T1C, T1E;
|
||
|
{
|
||
|
V T1x, T1y, T1A, T1B;
|
||
|
T1x = VFNMS(LDK(KP707106781), T1e, T1b);
|
||
|
T1y = VADD(T1r, T1s);
|
||
|
T1z = VFNMS(LDK(KP923879532), T1y, T1x);
|
||
|
T1D = VFMA(LDK(KP923879532), T1y, T1x);
|
||
|
T1A = VFNMS(LDK(KP707106781), T1p, T1o);
|
||
|
T1B = VSUB(T1i, T1l);
|
||
|
T1C = VFMA(LDK(KP923879532), T1B, T1A);
|
||
|
T1E = VFNMS(LDK(KP923879532), T1B, T1A);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V T15, T19, T18, T1a;
|
||
|
{
|
||
|
V T13, T14, T16, T17;
|
||
|
T13 = VADD(T7, Tf);
|
||
|
T14 = VADD(TQ, TX);
|
||
|
T15 = VSUB(T13, T14);
|
||
|
T19 = VADD(T13, T14);
|
||
|
T16 = VADD(Tl, Ts);
|
||
|
T17 = VADD(TB, TH);
|
||
|
T18 = VSUB(T16, T17);
|
||
|
T1a = VADD(T16, T17);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0]));
|
||
|
ST(&(x[0]), VADD(T19, T1a), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V T1n, T1v, T1u, T1w;
|
||
|
{
|
||
|
V T1f, T1m, T1q, T1t;
|
||
|
T1f = VFMA(LDK(KP707106781), T1e, T1b);
|
||
|
T1m = VADD(T1i, T1l);
|
||
|
T1n = VFNMS(LDK(KP923879532), T1m, T1f);
|
||
|
T1v = VFMA(LDK(KP923879532), T1m, T1f);
|
||
|
T1q = VFMA(LDK(KP707106781), T1p, T1o);
|
||
|
T1t = VSUB(T1r, T1s);
|
||
|
T1u = VFNMS(LDK(KP923879532), T1t, T1q);
|
||
|
T1w = VFMA(LDK(KP923879532), T1t, T1q);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 9),
|
||
|
VTW(0, 15),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, { 64, 52, 34, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t3bv_16) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t3bv_16, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include dft/simd/t3b.h -sign 1 */
|
||
|
|
||
|
/*
|
||
|
* This function contains 98 FP additions, 64 FP multiplications,
|
||
|
* (or, 94 additions, 60 multiplications, 4 fused multiply/add),
|
||
|
* 51 stack variables, 3 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/t3b.h"
|
||
|
|
||
|
static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
|
||
|
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
|
||
|
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ii;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
|
||
|
V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts;
|
||
|
T1 = LDW(&(W[0]));
|
||
|
T8 = LDW(&(W[TWVL * 2]));
|
||
|
T9 = VZMUL(T1, T8);
|
||
|
Tl = VZMULJ(T1, T8);
|
||
|
Ti = LDW(&(W[TWVL * 6]));
|
||
|
TE = VZMULJ(T1, Ti);
|
||
|
T4 = LDW(&(W[TWVL * 4]));
|
||
|
Ta = VZMULJ(T9, T4);
|
||
|
TO = VZMUL(T8, T4);
|
||
|
TV = VZMULJ(T1, T4);
|
||
|
Td = VZMUL(T9, T4);
|
||
|
Tm = VZMULJ(Tl, T4);
|
||
|
TA = VZMUL(T1, T4);
|
||
|
TH = VZMULJ(T8, T4);
|
||
|
Ts = VZMUL(Tl, T4);
|
||
|
{
|
||
|
V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j;
|
||
|
V T1k, Tw, T12, TU, TX, TW;
|
||
|
TU = LD(&(x[0]), ms, &(x[0]));
|
||
|
TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
|
||
|
TX = VZMUL(TV, TW);
|
||
|
TY = VSUB(TU, TX);
|
||
|
T1q = VADD(TU, TX);
|
||
|
{
|
||
|
V TN, TQ, TM, TP;
|
||
|
TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
TN = VZMUL(T9, TM);
|
||
|
TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
|
||
|
TQ = VZMUL(TO, TP);
|
||
|
TR = VSUB(TN, TQ);
|
||
|
T1r = VADD(TN, TQ);
|
||
|
}
|
||
|
{
|
||
|
V Tz, TJ, TC, TG, TD, TK;
|
||
|
{
|
||
|
V Ty, TI, TB, TF;
|
||
|
Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
Tz = VZMUL(Tl, Ty);
|
||
|
TI = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
|
||
|
TJ = VZMUL(TH, TI);
|
||
|
TB = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
|
||
|
TC = VZMUL(TA, TB);
|
||
|
TF = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
|
||
|
TG = VZMUL(TE, TF);
|
||
|
}
|
||
|
T1m = VADD(Tz, TC);
|
||
|
T1n = VADD(TG, TJ);
|
||
|
TD = VSUB(Tz, TC);
|
||
|
TK = VSUB(TG, TJ);
|
||
|
TL = VMUL(LDK(KP707106781), VSUB(TD, TK));
|
||
|
TZ = VMUL(LDK(KP707106781), VADD(TD, TK));
|
||
|
}
|
||
|
{
|
||
|
V T3, Tf, T6, Tc, T7, Tg;
|
||
|
{
|
||
|
V T2, Te, T5, Tb;
|
||
|
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
T3 = VZMUL(T1, T2);
|
||
|
Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tf = VZMUL(Td, Te);
|
||
|
T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
|
||
|
T6 = VZMUL(T4, T5);
|
||
|
Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tc = VZMUL(Ta, Tb);
|
||
|
}
|
||
|
T1f = VADD(T3, T6);
|
||
|
T1g = VADD(Tc, Tf);
|
||
|
T1h = VSUB(T1f, T1g);
|
||
|
T7 = VSUB(T3, T6);
|
||
|
Tg = VSUB(Tc, Tf);
|
||
|
Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7));
|
||
|
T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg));
|
||
|
}
|
||
|
{
|
||
|
V Tk, Tu, To, Tr, Tp, Tv;
|
||
|
{
|
||
|
V Tj, Tt, Tn, Tq;
|
||
|
Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tk = VZMUL(Ti, Tj);
|
||
|
Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tu = VZMUL(Ts, Tt);
|
||
|
Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
|
||
|
To = VZMUL(Tm, Tn);
|
||
|
Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
Tr = VZMUL(T8, Tq);
|
||
|
}
|
||
|
T1i = VADD(Tk, To);
|
||
|
T1j = VADD(Tr, Tu);
|
||
|
T1k = VSUB(T1i, T1j);
|
||
|
Tp = VSUB(Tk, To);
|
||
|
Tv = VSUB(Tr, Tu);
|
||
|
Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv));
|
||
|
T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv));
|
||
|
}
|
||
|
{
|
||
|
V T1p, T1v, T1u, T1w;
|
||
|
{
|
||
|
V T1l, T1o, T1s, T1t;
|
||
|
T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k));
|
||
|
T1o = VSUB(T1m, T1n);
|
||
|
T1p = VBYI(VSUB(T1l, T1o));
|
||
|
T1v = VBYI(VADD(T1o, T1l));
|
||
|
T1s = VSUB(T1q, T1r);
|
||
|
T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k));
|
||
|
T1u = VSUB(T1s, T1t);
|
||
|
T1w = VADD(T1s, T1t);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V T1z, T1D, T1C, T1E;
|
||
|
{
|
||
|
V T1x, T1y, T1A, T1B;
|
||
|
T1x = VADD(T1q, T1r);
|
||
|
T1y = VADD(T1m, T1n);
|
||
|
T1z = VSUB(T1x, T1y);
|
||
|
T1D = VADD(T1x, T1y);
|
||
|
T1A = VADD(T1f, T1g);
|
||
|
T1B = VADD(T1i, T1j);
|
||
|
T1C = VBYI(VSUB(T1A, T1B));
|
||
|
T1E = VADD(T1A, T1B);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0]));
|
||
|
ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0]));
|
||
|
}
|
||
|
{
|
||
|
V TT, T15, T14, T16;
|
||
|
{
|
||
|
V Tx, TS, T10, T13;
|
||
|
Tx = VSUB(Th, Tw);
|
||
|
TS = VSUB(TL, TR);
|
||
|
TT = VBYI(VSUB(Tx, TS));
|
||
|
T15 = VBYI(VADD(TS, Tx));
|
||
|
T10 = VSUB(TY, TZ);
|
||
|
T13 = VSUB(T11, T12);
|
||
|
T14 = VSUB(T10, T13);
|
||
|
T16 = VADD(T10, T13);
|
||
|
}
|
||
|
ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V T19, T1d, T1c, T1e;
|
||
|
{
|
||
|
V T17, T18, T1a, T1b;
|
||
|
T17 = VADD(TY, TZ);
|
||
|
T18 = VADD(Th, Tw);
|
||
|
T19 = VADD(T17, T18);
|
||
|
T1d = VSUB(T17, T18);
|
||
|
T1a = VADD(TR, TL);
|
||
|
T1b = VADD(T11, T12);
|
||
|
T1c = VBYI(VADD(T1a, T1b));
|
||
|
T1e = VBYI(VSUB(T1b, T1a));
|
||
|
}
|
||
|
ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 9),
|
||
|
VTW(0, 15),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, { 94, 60, 4, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_t3bv_16) (planner *p) {
|
||
|
X(kdft_dit_register) (p, t3bv_16, &desc);
|
||
|
}
|
||
|
#endif
|