furnace/extern/fftw/dft/scalar/codelets/t1_10.c

490 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:27 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */
/*
* This function contains 102 FP additions, 72 FP multiplications,
* (or, 48 additions, 18 multiplications, 54 fused multiply/add),
* 47 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
E T8, T23, T12, T1U, TM, TZ, T10, T1F, T1G, T1P, T16, T17, T18, T1s, T1x;
E T25, Tl, Ty, Tz, T1I, T1J, T1O, T13, T14, T15, T1h, T1m, T24;
{
E T1, T1T, T3, T6, T4, T1R, T2, T7, T1S, T5;
T1 = ri[0];
T1T = ii[0];
T3 = ri[WS(rs, 5)];
T6 = ii[WS(rs, 5)];
T2 = W[8];
T4 = T2 * T3;
T1R = T2 * T6;
T5 = W[9];
T7 = FMA(T5, T6, T4);
T1S = FNMS(T5, T3, T1R);
T8 = T1 - T7;
T23 = T1T - T1S;
T12 = T1 + T7;
T1U = T1S + T1T;
}
{
E TF, T1p, TY, T1w, TL, T1r, TS, T1u;
{
E TB, TE, TC, T1o, TA, TD;
TB = ri[WS(rs, 4)];
TE = ii[WS(rs, 4)];
TA = W[6];
TC = TA * TB;
T1o = TA * TE;
TD = W[7];
TF = FMA(TD, TE, TC);
T1p = FNMS(TD, TB, T1o);
}
{
E TU, TX, TV, T1v, TT, TW;
TU = ri[WS(rs, 1)];
TX = ii[WS(rs, 1)];
TT = W[0];
TV = TT * TU;
T1v = TT * TX;
TW = W[1];
TY = FMA(TW, TX, TV);
T1w = FNMS(TW, TU, T1v);
}
{
E TH, TK, TI, T1q, TG, TJ;
TH = ri[WS(rs, 9)];
TK = ii[WS(rs, 9)];
TG = W[16];
TI = TG * TH;
T1q = TG * TK;
TJ = W[17];
TL = FMA(TJ, TK, TI);
T1r = FNMS(TJ, TH, T1q);
}
{
E TO, TR, TP, T1t, TN, TQ;
TO = ri[WS(rs, 6)];
TR = ii[WS(rs, 6)];
TN = W[10];
TP = TN * TO;
T1t = TN * TR;
TQ = W[11];
TS = FMA(TQ, TR, TP);
T1u = FNMS(TQ, TO, T1t);
}
TM = TF - TL;
TZ = TS - TY;
T10 = TM + TZ;
T1F = T1p + T1r;
T1G = T1u + T1w;
T1P = T1F + T1G;
T16 = TF + TL;
T17 = TS + TY;
T18 = T16 + T17;
T1s = T1p - T1r;
T1x = T1u - T1w;
T25 = T1s + T1x;
}
{
E Te, T1e, Tx, T1l, Tk, T1g, Tr, T1j;
{
E Ta, Td, Tb, T1d, T9, Tc;
Ta = ri[WS(rs, 2)];
Td = ii[WS(rs, 2)];
T9 = W[2];
Tb = T9 * Ta;
T1d = T9 * Td;
Tc = W[3];
Te = FMA(Tc, Td, Tb);
T1e = FNMS(Tc, Ta, T1d);
}
{
E Tt, Tw, Tu, T1k, Ts, Tv;
Tt = ri[WS(rs, 3)];
Tw = ii[WS(rs, 3)];
Ts = W[4];
Tu = Ts * Tt;
T1k = Ts * Tw;
Tv = W[5];
Tx = FMA(Tv, Tw, Tu);
T1l = FNMS(Tv, Tt, T1k);
}
{
E Tg, Tj, Th, T1f, Tf, Ti;
Tg = ri[WS(rs, 7)];
Tj = ii[WS(rs, 7)];
Tf = W[12];
Th = Tf * Tg;
T1f = Tf * Tj;
Ti = W[13];
Tk = FMA(Ti, Tj, Th);
T1g = FNMS(Ti, Tg, T1f);
}
{
E Tn, Tq, To, T1i, Tm, Tp;
Tn = ri[WS(rs, 8)];
Tq = ii[WS(rs, 8)];
Tm = W[14];
To = Tm * Tn;
T1i = Tm * Tq;
Tp = W[15];
Tr = FMA(Tp, Tq, To);
T1j = FNMS(Tp, Tn, T1i);
}
Tl = Te - Tk;
Ty = Tr - Tx;
Tz = Tl + Ty;
T1I = T1e + T1g;
T1J = T1j + T1l;
T1O = T1I + T1J;
T13 = Te + Tk;
T14 = Tr + Tx;
T15 = T13 + T14;
T1h = T1e - T1g;
T1m = T1j - T1l;
T24 = T1h + T1m;
}
{
E T1b, T11, T1a, T1z, T1B, T1n, T1y, T1A, T1c;
T1b = Tz - T10;
T11 = Tz + T10;
T1a = FNMS(KP250000000, T11, T8);
T1n = T1h - T1m;
T1y = T1s - T1x;
T1z = FMA(KP618033988, T1y, T1n);
T1B = FNMS(KP618033988, T1n, T1y);
ri[WS(rs, 5)] = T8 + T11;
T1A = FNMS(KP559016994, T1b, T1a);
ri[WS(rs, 7)] = FNMS(KP951056516, T1B, T1A);
ri[WS(rs, 3)] = FMA(KP951056516, T1B, T1A);
T1c = FMA(KP559016994, T1b, T1a);
ri[WS(rs, 9)] = FNMS(KP951056516, T1z, T1c);
ri[WS(rs, 1)] = FMA(KP951056516, T1z, T1c);
}
{
E T28, T26, T27, T2c, T2e, T2a, T2b, T2d, T29;
T28 = T24 - T25;
T26 = T24 + T25;
T27 = FNMS(KP250000000, T26, T23);
T2a = Tl - Ty;
T2b = TM - TZ;
T2c = FMA(KP618033988, T2b, T2a);
T2e = FNMS(KP618033988, T2a, T2b);
ii[WS(rs, 5)] = T26 + T23;
T2d = FNMS(KP559016994, T28, T27);
ii[WS(rs, 3)] = FNMS(KP951056516, T2e, T2d);
ii[WS(rs, 7)] = FMA(KP951056516, T2e, T2d);
T29 = FMA(KP559016994, T28, T27);
ii[WS(rs, 1)] = FNMS(KP951056516, T2c, T29);
ii[WS(rs, 9)] = FMA(KP951056516, T2c, T29);
}
{
E T1D, T19, T1C, T1L, T1N, T1H, T1K, T1M, T1E;
T1D = T15 - T18;
T19 = T15 + T18;
T1C = FNMS(KP250000000, T19, T12);
T1H = T1F - T1G;
T1K = T1I - T1J;
T1L = FNMS(KP618033988, T1K, T1H);
T1N = FMA(KP618033988, T1H, T1K);
ri[0] = T12 + T19;
T1M = FMA(KP559016994, T1D, T1C);
ri[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M);
ri[WS(rs, 6)] = FMA(KP951056516, T1N, T1M);
T1E = FNMS(KP559016994, T1D, T1C);
ri[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E);
ri[WS(rs, 8)] = FMA(KP951056516, T1L, T1E);
}
{
E T1W, T1Q, T1V, T20, T22, T1Y, T1Z, T21, T1X;
T1W = T1O - T1P;
T1Q = T1O + T1P;
T1V = FNMS(KP250000000, T1Q, T1U);
T1Y = T16 - T17;
T1Z = T13 - T14;
T20 = FNMS(KP618033988, T1Z, T1Y);
T22 = FMA(KP618033988, T1Y, T1Z);
ii[0] = T1Q + T1U;
T21 = FMA(KP559016994, T1W, T1V);
ii[WS(rs, 4)] = FMA(KP951056516, T22, T21);
ii[WS(rs, 6)] = FNMS(KP951056516, T22, T21);
T1X = FNMS(KP559016994, T1W, T1V);
ii[WS(rs, 2)] = FMA(KP951056516, T20, T1X);
ii[WS(rs, 8)] = FNMS(KP951056516, T20, T1X);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 10 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, { 48, 18, 54, 0 }, 0, 0, 0 };
void X(codelet_t1_10) (planner *p) {
X(kdft_dit_register) (p, t1_10, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */
/*
* This function contains 102 FP additions, 60 FP multiplications,
* (or, 72 additions, 30 multiplications, 30 fused multiply/add),
* 45 stack variables, 4 constants, and 40 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) {
E T7, T1O, TT, T1C, TF, TQ, TR, T1o, T1p, T1y, TX, TY, TZ, T1d, T1g;
E T1M, Ti, Tt, Tu, T1r, T1s, T1x, TU, TV, TW, T16, T19, T1L;
{
E T1, T1B, T6, T1A;
T1 = ri[0];
T1B = ii[0];
{
E T3, T5, T2, T4;
T3 = ri[WS(rs, 5)];
T5 = ii[WS(rs, 5)];
T2 = W[8];
T4 = W[9];
T6 = FMA(T2, T3, T4 * T5);
T1A = FNMS(T4, T3, T2 * T5);
}
T7 = T1 - T6;
T1O = T1B - T1A;
TT = T1 + T6;
T1C = T1A + T1B;
}
{
E Tz, T1b, TP, T1f, TE, T1c, TK, T1e;
{
E Tw, Ty, Tv, Tx;
Tw = ri[WS(rs, 4)];
Ty = ii[WS(rs, 4)];
Tv = W[6];
Tx = W[7];
Tz = FMA(Tv, Tw, Tx * Ty);
T1b = FNMS(Tx, Tw, Tv * Ty);
}
{
E TM, TO, TL, TN;
TM = ri[WS(rs, 1)];
TO = ii[WS(rs, 1)];
TL = W[0];
TN = W[1];
TP = FMA(TL, TM, TN * TO);
T1f = FNMS(TN, TM, TL * TO);
}
{
E TB, TD, TA, TC;
TB = ri[WS(rs, 9)];
TD = ii[WS(rs, 9)];
TA = W[16];
TC = W[17];
TE = FMA(TA, TB, TC * TD);
T1c = FNMS(TC, TB, TA * TD);
}
{
E TH, TJ, TG, TI;
TH = ri[WS(rs, 6)];
TJ = ii[WS(rs, 6)];
TG = W[10];
TI = W[11];
TK = FMA(TG, TH, TI * TJ);
T1e = FNMS(TI, TH, TG * TJ);
}
TF = Tz - TE;
TQ = TK - TP;
TR = TF + TQ;
T1o = T1b + T1c;
T1p = T1e + T1f;
T1y = T1o + T1p;
TX = Tz + TE;
TY = TK + TP;
TZ = TX + TY;
T1d = T1b - T1c;
T1g = T1e - T1f;
T1M = T1d + T1g;
}
{
E Tc, T14, Ts, T18, Th, T15, Tn, T17;
{
E T9, Tb, T8, Ta;
T9 = ri[WS(rs, 2)];
Tb = ii[WS(rs, 2)];
T8 = W[2];
Ta = W[3];
Tc = FMA(T8, T9, Ta * Tb);
T14 = FNMS(Ta, T9, T8 * Tb);
}
{
E Tp, Tr, To, Tq;
Tp = ri[WS(rs, 3)];
Tr = ii[WS(rs, 3)];
To = W[4];
Tq = W[5];
Ts = FMA(To, Tp, Tq * Tr);
T18 = FNMS(Tq, Tp, To * Tr);
}
{
E Te, Tg, Td, Tf;
Te = ri[WS(rs, 7)];
Tg = ii[WS(rs, 7)];
Td = W[12];
Tf = W[13];
Th = FMA(Td, Te, Tf * Tg);
T15 = FNMS(Tf, Te, Td * Tg);
}
{
E Tk, Tm, Tj, Tl;
Tk = ri[WS(rs, 8)];
Tm = ii[WS(rs, 8)];
Tj = W[14];
Tl = W[15];
Tn = FMA(Tj, Tk, Tl * Tm);
T17 = FNMS(Tl, Tk, Tj * Tm);
}
Ti = Tc - Th;
Tt = Tn - Ts;
Tu = Ti + Tt;
T1r = T14 + T15;
T1s = T17 + T18;
T1x = T1r + T1s;
TU = Tc + Th;
TV = Tn + Ts;
TW = TU + TV;
T16 = T14 - T15;
T19 = T17 - T18;
T1L = T16 + T19;
}
{
E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13;
T11 = KP559016994 * (Tu - TR);
TS = Tu + TR;
T12 = FNMS(KP250000000, TS, T7);
T1a = T16 - T19;
T1h = T1d - T1g;
T1i = FMA(KP951056516, T1a, KP587785252 * T1h);
T1k = FNMS(KP587785252, T1a, KP951056516 * T1h);
ri[WS(rs, 5)] = T7 + TS;
T1j = T12 - T11;
ri[WS(rs, 7)] = T1j - T1k;
ri[WS(rs, 3)] = T1j + T1k;
T13 = T11 + T12;
ri[WS(rs, 9)] = T13 - T1i;
ri[WS(rs, 1)] = T13 + T1i;
}
{
E T1N, T1P, T1Q, T1U, T1W, T1S, T1T, T1V, T1R;
T1N = KP559016994 * (T1L - T1M);
T1P = T1L + T1M;
T1Q = FNMS(KP250000000, T1P, T1O);
T1S = Ti - Tt;
T1T = TF - TQ;
T1U = FMA(KP951056516, T1S, KP587785252 * T1T);
T1W = FNMS(KP587785252, T1S, KP951056516 * T1T);
ii[WS(rs, 5)] = T1P + T1O;
T1V = T1Q - T1N;
ii[WS(rs, 3)] = T1V - T1W;
ii[WS(rs, 7)] = T1W + T1V;
T1R = T1N + T1Q;
ii[WS(rs, 1)] = T1R - T1U;
ii[WS(rs, 9)] = T1U + T1R;
}
{
E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n;
T1m = KP559016994 * (TW - TZ);
T10 = TW + TZ;
T1l = FNMS(KP250000000, T10, TT);
T1q = T1o - T1p;
T1t = T1r - T1s;
T1u = FNMS(KP587785252, T1t, KP951056516 * T1q);
T1w = FMA(KP951056516, T1t, KP587785252 * T1q);
ri[0] = TT + T10;
T1v = T1m + T1l;
ri[WS(rs, 4)] = T1v - T1w;
ri[WS(rs, 6)] = T1v + T1w;
T1n = T1l - T1m;
ri[WS(rs, 2)] = T1n - T1u;
ri[WS(rs, 8)] = T1n + T1u;
}
{
E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I;
T1H = KP559016994 * (T1x - T1y);
T1z = T1x + T1y;
T1G = FNMS(KP250000000, T1z, T1C);
T1D = TX - TY;
T1E = TU - TV;
T1F = FNMS(KP587785252, T1E, KP951056516 * T1D);
T1J = FMA(KP951056516, T1E, KP587785252 * T1D);
ii[0] = T1z + T1C;
T1K = T1H + T1G;
ii[WS(rs, 4)] = T1J + T1K;
ii[WS(rs, 6)] = T1K - T1J;
T1I = T1G - T1H;
ii[WS(rs, 2)] = T1F + T1I;
ii[WS(rs, 8)] = T1I - T1F;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 10 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, { 72, 30, 30, 0 }, 0, 0, 0 };
void X(codelet_t1_10) (planner *p) {
X(kdft_dit_register) (p, t1_10, &desc);
}
#endif