furnace/extern/fftw/dft/scalar/codelets/n1_64.c

3087 lines
79 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:26 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
/*
* This function contains 912 FP additions, 392 FP multiplications,
* (or, 520 additions, 0 multiplications, 392 fused multiply/add),
* 172 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;
E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J;
E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;
E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z;
E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;
E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;
E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;
E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W;
E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A;
{
E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;
E T3c;
{
E T1, T2, T24, T25;
T1 = ri[0];
T2 = ri[WS(is, 32)];
T3 = T1 + T2;
T35 = T1 - T2;
T24 = ii[0];
T25 = ii[WS(is, 32)];
T26 = T24 + T25;
T5Y = T24 - T25;
}
{
E T4, T5, T27, T28;
T4 = ri[WS(is, 16)];
T5 = ri[WS(is, 48)];
T6 = T4 + T5;
T5X = T4 - T5;
T27 = ii[WS(is, 16)];
T28 = ii[WS(is, 48)];
T29 = T27 + T28;
T36 = T27 - T28;
}
{
E T8, T9, T2b, T2c;
T8 = ri[WS(is, 8)];
T9 = ri[WS(is, 40)];
Ta = T8 + T9;
T39 = T8 - T9;
T2b = ii[WS(is, 8)];
T2c = ii[WS(is, 40)];
T2d = T2b + T2c;
T38 = T2b - T2c;
}
{
E Tb, Tc, T2e, T2f;
Tb = ri[WS(is, 56)];
Tc = ri[WS(is, 24)];
Td = Tb + Tc;
T3b = Tb - Tc;
T2e = ii[WS(is, 56)];
T2f = ii[WS(is, 24)];
T2g = T2e + T2f;
T3c = T2e - T2f;
}
{
E T7, Te, T2a, T2h;
T37 = T35 - T36;
T7B = T35 + T36;
T8F = T5Y - T5X;
T5Z = T5X + T5Y;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
Td9 = T7 - Te;
{
E Tbz, TbA, T60, T61;
Tbz = Td - Ta;
TbA = T26 - T29;
TbB = Tbz + TbA;
TcB = TbA - Tbz;
T60 = T3b - T3c;
T61 = T39 + T38;
T62 = T60 - T61;
T7C = T61 + T60;
}
T2a = T26 + T29;
T2h = T2d + T2g;
T2i = T2a + T2h;
TdH = T2a - T2h;
{
E Taf, Tag, T3a, T3d;
Taf = T3 - T6;
Tag = T2d - T2g;
Tah = Taf + Tag;
Tcb = Taf - Tag;
T3a = T38 - T39;
T3d = T3b + T3c;
T3e = T3a - T3d;
T8G = T3a + T3d;
}
}
}
{
E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;
E T3r;
{
E Tg, Th, T2j, T2k;
Tg = ri[WS(is, 4)];
Th = ri[WS(is, 36)];
Ti = Tg + Th;
T3j = Tg - Th;
T2j = ii[WS(is, 4)];
T2k = ii[WS(is, 36)];
T2l = T2j + T2k;
T3h = T2j - T2k;
}
{
E Tj, Tk, T2m, T2n;
Tj = ri[WS(is, 20)];
Tk = ri[WS(is, 52)];
Tl = Tj + Tk;
T3g = Tj - Tk;
T2m = ii[WS(is, 20)];
T2n = ii[WS(is, 52)];
T2o = T2m + T2n;
T3k = T2m - T2n;
}
{
E Tn, To, T2q, T2r;
Tn = ri[WS(is, 60)];
To = ri[WS(is, 28)];
Tp = Tn + To;
T3q = Tn - To;
T2q = ii[WS(is, 60)];
T2r = ii[WS(is, 28)];
T2s = T2q + T2r;
T3o = T2q - T2r;
}
{
E Tq, Tr, T2t, T2u;
Tq = ri[WS(is, 12)];
Tr = ri[WS(is, 44)];
Ts = Tq + Tr;
T3n = Tq - Tr;
T2t = ii[WS(is, 12)];
T2u = ii[WS(is, 44)];
T2v = T2t + T2u;
T3r = T2t - T2u;
}
{
E Tm, Tt, Tai, Taj;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
TdI = Tt - Tm;
Tai = Ti - Tl;
Taj = T2l - T2o;
Tak = Tai + Taj;
TbC = Taj - Tai;
}
{
E Tal, Tam, T2p, T2w;
Tal = Tp - Ts;
Tam = T2s - T2v;
Tan = Tal - Tam;
TbD = Tal + Tam;
T2p = T2l + T2o;
T2w = T2s + T2v;
T2x = T2p + T2w;
Tda = T2p - T2w;
}
{
E T3i, T3l, T7E, T7F;
T3i = T3g + T3h;
T3l = T3j - T3k;
T3m = FMA(KP414213562, T3l, T3i);
T65 = FNMS(KP414213562, T3i, T3l);
T7E = T3j + T3k;
T7F = T3h - T3g;
T7G = FMA(KP414213562, T7F, T7E);
T8I = FNMS(KP414213562, T7E, T7F);
}
{
E T7H, T7I, T3p, T3s;
T7H = T3q + T3r;
T7I = T3o - T3n;
T7J = FNMS(KP414213562, T7I, T7H);
T8J = FMA(KP414213562, T7H, T7I);
T3p = T3n + T3o;
T3s = T3q - T3r;
T3t = FNMS(KP414213562, T3s, T3p);
T64 = FMA(KP414213562, T3p, T3s);
}
}
{
E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I;
E T3B;
{
E Tw, Tx, T2C, T2D;
Tw = ri[WS(is, 2)];
Tx = ri[WS(is, 34)];
Ty = Tw + Tx;
T3H = Tw - Tx;
{
E T2z, T2A, Tz, TA;
T2z = ii[WS(is, 2)];
T2A = ii[WS(is, 34)];
T2B = T2z + T2A;
T3x = T2z - T2A;
Tz = ri[WS(is, 18)];
TA = ri[WS(is, 50)];
TB = Tz + TA;
T3w = Tz - TA;
}
T2C = ii[WS(is, 18)];
T2D = ii[WS(is, 50)];
T2E = T2C + T2D;
T3I = T2C - T2D;
{
E TG, TH, T3C, T2J, T2K, T3D;
TG = ri[WS(is, 58)];
TH = ri[WS(is, 26)];
T3C = TG - TH;
T2J = ii[WS(is, 58)];
T2K = ii[WS(is, 26)];
T3D = T2J - T2K;
TI = TG + TH;
T3K = T3C + T3D;
T2L = T2J + T2K;
T3E = T3C - T3D;
}
{
E TD, TE, T3z, T2G, T2H, T3A;
TD = ri[WS(is, 10)];
TE = ri[WS(is, 42)];
T3z = TD - TE;
T2G = ii[WS(is, 10)];
T2H = ii[WS(is, 42)];
T3A = T2G - T2H;
TF = TD + TE;
T3L = T3A - T3z;
T2I = T2G + T2H;
T3B = T3z + T3A;
}
}
{
E TC, TJ, Taq, Tar;
TC = Ty + TB;
TJ = TF + TI;
TK = TC + TJ;
Tdd = TC - TJ;
Taq = TI - TF;
Tar = T2B - T2E;
Tas = Taq + Tar;
Tce = Tar - Taq;
}
{
E Tat, Tau, T2F, T2M;
Tat = Ty - TB;
Tau = T2I - T2L;
Tav = Tat + Tau;
Tcf = Tat - Tau;
T2F = T2B + T2E;
T2M = T2I + T2L;
T2N = T2F + T2M;
Tdc = T2F - T2M;
}
{
E T3y, T3F, T7M, T7N;
T3y = T3w + T3x;
T3F = T3B - T3E;
T3G = FNMS(KP707106781, T3F, T3y);
T6G = FMA(KP707106781, T3F, T3y);
T7M = T3x - T3w;
T7N = T3L + T3K;
T7O = FMA(KP707106781, T7N, T7M);
T9k = FNMS(KP707106781, T7N, T7M);
}
{
E T7P, T7Q, T3J, T3M;
T7P = T3H + T3I;
T7Q = T3B + T3E;
T7R = FMA(KP707106781, T7Q, T7P);
T9l = FNMS(KP707106781, T7Q, T7P);
T3J = T3H - T3I;
T3M = T3K - T3L;
T3N = FNMS(KP707106781, T3M, T3J);
T6H = FMA(KP707106781, T3M, T3J);
}
}
{
E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c;
E T5O;
{
E T1x, T1y, T5J, T5K;
T1x = ri[WS(is, 63)];
T1y = ri[WS(is, 31)];
T1z = T1x + T1y;
T5I = T1x - T1y;
{
E T54, T55, T1A, T1B;
T54 = ii[WS(is, 63)];
T55 = ii[WS(is, 31)];
T56 = T54 - T55;
Tb8 = T54 + T55;
T1A = ri[WS(is, 15)];
T1B = ri[WS(is, 47)];
T1C = T1A + T1B;
T53 = T1A - T1B;
}
T5J = ii[WS(is, 15)];
T5K = ii[WS(is, 47)];
T5L = T5J - T5K;
Tb9 = T5J + T5K;
{
E T1H, T1I, T5d, T5e, T5f, T5g;
T1H = ri[WS(is, 55)];
T1I = ri[WS(is, 23)];
T5d = T1H - T1I;
T5e = ii[WS(is, 55)];
T5f = ii[WS(is, 23)];
T5g = T5e - T5f;
T1J = T1H + T1I;
Tbq = T5e + T5f;
T5h = T5d - T5g;
T5N = T5d + T5g;
}
{
E T1E, T1F, T58, T59, T5a, T5b;
T1E = ri[WS(is, 7)];
T1F = ri[WS(is, 39)];
T58 = T1E - T1F;
T59 = ii[WS(is, 7)];
T5a = ii[WS(is, 39)];
T5b = T59 - T5a;
T1G = T1E + T1F;
Tbp = T59 + T5a;
T5c = T58 + T5b;
T5O = T5b - T58;
}
}
{
E T1D, T1K, Tbo, Tbr;
T1D = T1z + T1C;
T1K = T1G + T1J;
T1L = T1D + T1K;
TdA = T1D - T1K;
Tbo = T1z - T1C;
Tbr = Tbp - Tbq;
Tbs = Tbo + Tbr;
Tct = Tbo - Tbr;
}
{
E Tdv, Tdw, T57, T5i;
Tdv = Tb8 + Tb9;
Tdw = Tbp + Tbq;
Tdx = Tdv - Tdw;
Teo = Tdv + Tdw;
T57 = T53 + T56;
T5i = T5c - T5h;
T5j = FNMS(KP707106781, T5i, T57);
T6Y = FMA(KP707106781, T5i, T57);
}
{
E T5M, T5P, T8w, T8x;
T5M = T5I - T5L;
T5P = T5N - T5O;
T5Q = FNMS(KP707106781, T5P, T5M);
T6V = FMA(KP707106781, T5P, T5M);
T8w = T5I + T5L;
T8x = T5c + T5h;
T8y = FMA(KP707106781, T8x, T8w);
T9z = FNMS(KP707106781, T8x, T8w);
}
{
E Tb7, Tba, T8l, T8m;
Tb7 = T1J - T1G;
Tba = Tb8 - Tb9;
Tbb = Tb7 + Tba;
Tcw = Tba - Tb7;
T8l = T56 - T53;
T8m = T5O + T5N;
T8n = FMA(KP707106781, T8m, T8l);
T9C = FNMS(KP707106781, T8m, T8l);
}
}
{
E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X;
E T3U;
{
E TL, TM, T2R, T2S;
TL = ri[WS(is, 62)];
TM = ri[WS(is, 30)];
TN = TL + TM;
T40 = TL - TM;
{
E T2O, T2P, TO, TP;
T2O = ii[WS(is, 62)];
T2P = ii[WS(is, 30)];
T2Q = T2O + T2P;
T3Q = T2O - T2P;
TO = ri[WS(is, 14)];
TP = ri[WS(is, 46)];
TQ = TO + TP;
T3P = TO - TP;
}
T2R = ii[WS(is, 14)];
T2S = ii[WS(is, 46)];
T2T = T2R + T2S;
T41 = T2R - T2S;
{
E TV, TW, T3V, T2Y, T2Z, T3W;
TV = ri[WS(is, 54)];
TW = ri[WS(is, 22)];
T3V = TV - TW;
T2Y = ii[WS(is, 54)];
T2Z = ii[WS(is, 22)];
T3W = T2Y - T2Z;
TX = TV + TW;
T43 = T3V + T3W;
T30 = T2Y + T2Z;
T3X = T3V - T3W;
}
{
E TS, TT, T3S, T2V, T2W, T3T;
TS = ri[WS(is, 6)];
TT = ri[WS(is, 38)];
T3S = TS - TT;
T2V = ii[WS(is, 6)];
T2W = ii[WS(is, 38)];
T3T = T2V - T2W;
TU = TS + TT;
T44 = T3T - T3S;
T2X = T2V + T2W;
T3U = T3S + T3T;
}
}
{
E TR, TY, Tax, Tay;
TR = TN + TQ;
TY = TU + TX;
TZ = TR + TY;
Tdf = TR - TY;
Tax = TX - TU;
Tay = T2Q - T2T;
Taz = Tax + Tay;
Tch = Tay - Tax;
}
{
E TaA, TaB, T2U, T31;
TaA = TN - TQ;
TaB = T2X - T30;
TaC = TaA + TaB;
Tci = TaA - TaB;
T2U = T2Q + T2T;
T31 = T2X + T30;
T32 = T2U + T31;
Tdg = T2U - T31;
}
{
E T3R, T3Y, T7T, T7U;
T3R = T3P + T3Q;
T3Y = T3U - T3X;
T3Z = FNMS(KP707106781, T3Y, T3R);
T6J = FMA(KP707106781, T3Y, T3R);
T7T = T3Q - T3P;
T7U = T44 + T43;
T7V = FMA(KP707106781, T7U, T7T);
T9n = FNMS(KP707106781, T7U, T7T);
}
{
E T7W, T7X, T42, T45;
T7W = T40 + T41;
T7X = T3U + T3X;
T7Y = FMA(KP707106781, T7X, T7W);
T9o = FNMS(KP707106781, T7X, T7W);
T42 = T40 - T41;
T45 = T43 - T44;
T46 = FNMS(KP707106781, T45, T42);
T6K = FMA(KP707106781, T45, T42);
}
}
{
E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j;
E T4V;
{
E T12, T13, T4Q, T4R;
T12 = ri[WS(is, 1)];
T13 = ri[WS(is, 33)];
T14 = T12 + T13;
T4P = T12 - T13;
{
E T4b, T4c, T15, T16;
T4b = ii[WS(is, 1)];
T4c = ii[WS(is, 33)];
T4d = T4b - T4c;
TaH = T4b + T4c;
T15 = ri[WS(is, 17)];
T16 = ri[WS(is, 49)];
T17 = T15 + T16;
T4a = T15 - T16;
}
T4Q = ii[WS(is, 17)];
T4R = ii[WS(is, 49)];
T4S = T4Q - T4R;
TaI = T4Q + T4R;
{
E T1c, T1d, T4k, T4l, T4m, T4n;
T1c = ri[WS(is, 57)];
T1d = ri[WS(is, 25)];
T4k = T1c - T1d;
T4l = ii[WS(is, 57)];
T4m = ii[WS(is, 25)];
T4n = T4l - T4m;
T1e = T1c + T1d;
TaZ = T4l + T4m;
T4o = T4k - T4n;
T4U = T4k + T4n;
}
{
E T19, T1a, T4f, T4g, T4h, T4i;
T19 = ri[WS(is, 9)];
T1a = ri[WS(is, 41)];
T4f = T19 - T1a;
T4g = ii[WS(is, 9)];
T4h = ii[WS(is, 41)];
T4i = T4g - T4h;
T1b = T19 + T1a;
TaY = T4g + T4h;
T4j = T4f + T4i;
T4V = T4i - T4f;
}
}
{
E T18, T1f, TaX, Tb0;
T18 = T14 + T17;
T1f = T1b + T1e;
T1g = T18 + T1f;
Tdp = T18 - T1f;
TaX = T14 - T17;
Tb0 = TaY - TaZ;
Tb1 = TaX + Tb0;
Tcm = TaX - Tb0;
}
{
E Tdk, Tdl, T4e, T4p;
Tdk = TaH + TaI;
Tdl = TaY + TaZ;
Tdm = Tdk - Tdl;
Tej = Tdk + Tdl;
T4e = T4a + T4d;
T4p = T4j - T4o;
T4q = FNMS(KP707106781, T4p, T4e);
T6R = FMA(KP707106781, T4p, T4e);
}
{
E T4T, T4W, T8d, T8e;
T4T = T4P - T4S;
T4W = T4U - T4V;
T4X = FNMS(KP707106781, T4W, T4T);
T6O = FMA(KP707106781, T4W, T4T);
T8d = T4P + T4S;
T8e = T4j + T4o;
T8f = FMA(KP707106781, T8e, T8d);
T9s = FNMS(KP707106781, T8e, T8d);
}
{
E TaG, TaJ, T82, T83;
TaG = T1e - T1b;
TaJ = TaH - TaI;
TaK = TaG + TaJ;
Tcp = TaJ - TaG;
T82 = T4d - T4a;
T83 = T4V + T4U;
T84 = FMA(KP707106781, T83, T82);
T9v = FNMS(KP707106781, T83, T82);
}
}
{
E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v;
E T4A, TaT, TaQ, T89, T88;
{
E T4C, T4K, T4H, T4F;
{
E T1h, T1i, T4I, T4J;
T1h = ri[WS(is, 5)];
T1i = ri[WS(is, 37)];
T1j = T1h + T1i;
T4C = T1h - T1i;
T4I = ii[WS(is, 5)];
T4J = ii[WS(is, 37)];
T4K = T4I - T4J;
TaL = T4I + T4J;
}
{
E T1k, T1l, T4D, T4E;
T1k = ri[WS(is, 21)];
T1l = ri[WS(is, 53)];
T1m = T1k + T1l;
T4H = T1k - T1l;
T4D = ii[WS(is, 21)];
T4E = ii[WS(is, 53)];
T4F = T4D - T4E;
TaM = T4D + T4E;
}
T4G = T4C - T4F;
T4L = T4H + T4K;
TaO = T1j - T1m;
TaN = TaL - TaM;
T86 = T4C + T4F;
T85 = T4K - T4H;
}
{
E T4r, T4z, T4w, T4u;
{
E T1o, T1p, T4x, T4y;
T1o = ri[WS(is, 61)];
T1p = ri[WS(is, 29)];
T1q = T1o + T1p;
T4r = T1o - T1p;
T4x = ii[WS(is, 61)];
T4y = ii[WS(is, 29)];
T4z = T4x - T4y;
TaR = T4x + T4y;
}
{
E T1r, T1s, T4s, T4t;
T1r = ri[WS(is, 13)];
T1s = ri[WS(is, 45)];
T1t = T1r + T1s;
T4w = T1r - T1s;
T4s = ii[WS(is, 13)];
T4t = ii[WS(is, 45)];
T4u = T4s - T4t;
TaS = T4s + T4t;
}
T4v = T4r - T4u;
T4A = T4w + T4z;
TaT = TaR - TaS;
TaQ = T1q - T1t;
T89 = T4r + T4u;
T88 = T4z - T4w;
}
{
E T1n, T1u, Tb2, Tb3;
T1n = T1j + T1m;
T1u = T1q + T1t;
T1v = T1n + T1u;
Tdn = T1u - T1n;
Tb2 = TaO + TaN;
Tb3 = TaQ - TaT;
Tb4 = Tb2 + Tb3;
Tcq = Tb2 - Tb3;
}
{
E Tdq, Tdr, T4B, T4M;
Tdq = TaL + TaM;
Tdr = TaR + TaS;
Tds = Tdq - Tdr;
Tek = Tdq + Tdr;
T4B = FMA(KP414213562, T4A, T4v);
T4M = FNMS(KP414213562, T4L, T4G);
T4N = T4B - T4M;
T6P = T4M + T4B;
}
{
E T4Y, T4Z, T8g, T8h;
T4Y = FMA(KP414213562, T4G, T4L);
T4Z = FNMS(KP414213562, T4v, T4A);
T50 = T4Y - T4Z;
T6S = T4Y + T4Z;
T8g = FMA(KP414213562, T85, T86);
T8h = FNMS(KP414213562, T88, T89);
T8i = T8g + T8h;
T9w = T8g - T8h;
}
{
E TaP, TaU, T87, T8a;
TaP = TaN - TaO;
TaU = TaQ + TaT;
TaV = TaP + TaU;
Tcn = TaU - TaP;
T87 = FNMS(KP414213562, T86, T85);
T8a = FMA(KP414213562, T89, T88);
T8b = T87 + T8a;
T9t = T8a - T87;
}
}
{
E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o;
E T5t, Tbk, Tbh, T8s, T8r;
{
E T5v, T5D, T5A, T5y;
{
E T1M, T1N, T5B, T5C;
T1M = ri[WS(is, 3)];
T1N = ri[WS(is, 35)];
T1O = T1M + T1N;
T5v = T1M - T1N;
T5B = ii[WS(is, 3)];
T5C = ii[WS(is, 35)];
T5D = T5B - T5C;
Tbc = T5B + T5C;
}
{
E T1P, T1Q, T5w, T5x;
T1P = ri[WS(is, 19)];
T1Q = ri[WS(is, 51)];
T1R = T1P + T1Q;
T5A = T1P - T1Q;
T5w = ii[WS(is, 19)];
T5x = ii[WS(is, 51)];
T5y = T5w - T5x;
Tbd = T5w + T5x;
}
T5z = T5v - T5y;
T5E = T5A + T5D;
Tbf = T1O - T1R;
Tbe = Tbc - Tbd;
T8p = T5v + T5y;
T8o = T5D - T5A;
}
{
E T5k, T5s, T5p, T5n;
{
E T1T, T1U, T5q, T5r;
T1T = ri[WS(is, 59)];
T1U = ri[WS(is, 27)];
T1V = T1T + T1U;
T5k = T1T - T1U;
T5q = ii[WS(is, 59)];
T5r = ii[WS(is, 27)];
T5s = T5q - T5r;
Tbi = T5q + T5r;
}
{
E T1W, T1X, T5l, T5m;
T1W = ri[WS(is, 11)];
T1X = ri[WS(is, 43)];
T1Y = T1W + T1X;
T5p = T1W - T1X;
T5l = ii[WS(is, 11)];
T5m = ii[WS(is, 43)];
T5n = T5l - T5m;
Tbj = T5l + T5m;
}
T5o = T5k - T5n;
T5t = T5p + T5s;
Tbk = Tbi - Tbj;
Tbh = T1V - T1Y;
T8s = T5k + T5n;
T8r = T5s - T5p;
}
{
E T1S, T1Z, Tbt, Tbu;
T1S = T1O + T1R;
T1Z = T1V + T1Y;
T20 = T1S + T1Z;
Tdy = T1Z - T1S;
Tbt = Tbf + Tbe;
Tbu = Tbh - Tbk;
Tbv = Tbt + Tbu;
Tcx = Tbt - Tbu;
}
{
E TdB, TdC, T5u, T5F;
TdB = Tbc + Tbd;
TdC = Tbi + Tbj;
TdD = TdB - TdC;
Tep = TdB + TdC;
T5u = FMA(KP414213562, T5t, T5o);
T5F = FNMS(KP414213562, T5E, T5z);
T5G = T5u - T5F;
T6W = T5F + T5u;
}
{
E T5R, T5S, T8z, T8A;
T5R = FMA(KP414213562, T5z, T5E);
T5S = FNMS(KP414213562, T5o, T5t);
T5T = T5R - T5S;
T6Z = T5R + T5S;
T8z = FMA(KP414213562, T8o, T8p);
T8A = FNMS(KP414213562, T8r, T8s);
T8B = T8z + T8A;
T9D = T8z - T8A;
}
{
E Tbg, Tbl, T8q, T8t;
Tbg = Tbe - Tbf;
Tbl = Tbh + Tbk;
Tbm = Tbg + Tbl;
Tcu = Tbl - Tbg;
T8q = FNMS(KP414213562, T8p, T8o);
T8t = FMA(KP414213562, T8s, T8r);
T8u = T8q + T8t;
T9A = T8t - T8q;
}
}
{
E T11, TeD, TeG, TeI, T22, T23, T34, TeH;
{
E Tv, T10, TeE, TeF;
Tv = Tf + Tu;
T10 = TK + TZ;
T11 = Tv + T10;
TeD = Tv - T10;
TeE = Tej + Tek;
TeF = Teo + Tep;
TeG = TeE - TeF;
TeI = TeE + TeF;
}
{
E T1w, T21, T2y, T33;
T1w = T1g + T1v;
T21 = T1L + T20;
T22 = T1w + T21;
T23 = T21 - T1w;
T2y = T2i + T2x;
T33 = T2N + T32;
T34 = T2y - T33;
TeH = T2y + T33;
}
ro[WS(os, 32)] = T11 - T22;
io[WS(os, 32)] = TeH - TeI;
ro[0] = T11 + T22;
io[0] = TeH + TeI;
io[WS(os, 16)] = T23 + T34;
ro[WS(os, 16)] = TeD + TeG;
io[WS(os, 48)] = T34 - T23;
ro[WS(os, 48)] = TeD - TeG;
}
{
E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez;
{
E Tef, Teg, Tet, Teu;
Tef = Tf - Tu;
Teg = T2N - T32;
Teh = Tef + Teg;
Tex = Tef - Teg;
Tet = T2i - T2x;
Teu = TZ - TK;
Tev = Tet - Teu;
TeB = Teu + Tet;
}
{
E Tei, Tel, Ten, Teq;
Tei = T1g - T1v;
Tel = Tej - Tek;
Tem = Tei + Tel;
Tey = Tel - Tei;
Ten = T1L - T20;
Teq = Teo - Tep;
Ter = Ten - Teq;
Tez = Ten + Teq;
}
{
E Tes, TeC, Tew, TeA;
Tes = Tem + Ter;
ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh);
ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh);
TeC = Tey + Tez;
io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB);
io[WS(os, 8)] = FMA(KP707106781, TeC, TeB);
Tew = Ter - Tem;
io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev);
io[WS(os, 24)] = FMA(KP707106781, Tew, Tev);
TeA = Tey - Tez;
ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex);
ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex);
}
}
{
E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF;
E TdQ;
{
E Tde, Tdh, Tdo, Tdt;
Tdb = Td9 - Tda;
TdV = Td9 + Tda;
Te5 = TdI + TdH;
TdJ = TdH - TdI;
Tde = Tdc - Tdd;
Tdh = Tdf + Tdg;
Tdi = Tde - Tdh;
Te6 = Tde + Tdh;
{
E Te1, Te2, TdK, TdL;
Te1 = TdA + TdD;
Te2 = Tdy + Tdx;
Te3 = FNMS(KP414213562, Te2, Te1);
Teb = FMA(KP414213562, Te1, Te2);
TdK = Tdf - Tdg;
TdL = Tdd + Tdc;
TdM = TdK - TdL;
TdW = TdL + TdK;
}
Tdo = Tdm - Tdn;
Tdt = Tdp - Tds;
Tdu = FMA(KP414213562, Tdt, Tdo);
TdR = FNMS(KP414213562, Tdo, Tdt);
{
E TdY, TdZ, Tdz, TdE;
TdY = Tdp + Tds;
TdZ = Tdn + Tdm;
Te0 = FMA(KP414213562, TdZ, TdY);
Tea = FNMS(KP414213562, TdY, TdZ);
Tdz = Tdx - Tdy;
TdE = TdA - TdD;
TdF = FNMS(KP414213562, TdE, Tdz);
TdQ = FMA(KP414213562, Tdz, TdE);
}
}
{
E Tdj, TdG, TdP, TdS;
Tdj = FMA(KP707106781, Tdi, Tdb);
TdG = Tdu - TdF;
ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj);
ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj);
TdP = FMA(KP707106781, TdM, TdJ);
TdS = TdQ - TdR;
io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP);
io[WS(os, 12)] = FMA(KP923879532, TdS, TdP);
}
{
E TdN, TdO, TdT, TdU;
TdN = FNMS(KP707106781, TdM, TdJ);
TdO = Tdu + TdF;
io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN);
io[WS(os, 60)] = FMA(KP923879532, TdO, TdN);
TdT = FNMS(KP707106781, Tdi, Tdb);
TdU = TdR + TdQ;
ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT);
ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT);
}
{
E TdX, Te4, Ted, Tee;
TdX = FMA(KP707106781, TdW, TdV);
Te4 = Te0 + Te3;
ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX);
ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX);
Ted = FMA(KP707106781, Te6, Te5);
Tee = Tea + Teb;
io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted);
io[WS(os, 4)] = FMA(KP923879532, Tee, Ted);
}
{
E Te7, Te8, Te9, Tec;
Te7 = FNMS(KP707106781, Te6, Te5);
Te8 = Te3 - Te0;
io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7);
io[WS(os, 20)] = FMA(KP923879532, Te8, Te7);
Te9 = FNMS(KP707106781, TdW, TdV);
Tec = Tea - Teb;
ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9);
ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9);
}
}
{
E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz;
E TcL, Tcc, TcC;
Tcc = TbC - TbD;
Tcd = FMA(KP707106781, Tcc, Tcb);
TcP = FNMS(KP707106781, Tcc, Tcb);
TcC = Tan - Tak;
TcD = FMA(KP707106781, TcC, TcB);
TcZ = FNMS(KP707106781, TcC, TcB);
{
E Tcg, Tcj, TcV, TcW;
Tcg = FMA(KP414213562, Tcf, Tce);
Tcj = FNMS(KP414213562, Tci, Tch);
Tck = Tcg - Tcj;
Td0 = Tcg + Tcj;
TcV = FMA(KP707106781, Tcx, Tcw);
TcW = FMA(KP707106781, Tcu, Tct);
TcX = FNMS(KP198912367, TcW, TcV);
Td4 = FMA(KP198912367, TcV, TcW);
}
{
E Tco, Tcr, TcE, TcF;
Tco = FNMS(KP707106781, Tcn, Tcm);
Tcr = FNMS(KP707106781, Tcq, Tcp);
Tcs = FMA(KP668178637, Tcr, Tco);
TcK = FNMS(KP668178637, Tco, Tcr);
TcE = FMA(KP414213562, Tch, Tci);
TcF = FNMS(KP414213562, Tce, Tcf);
TcG = TcE - TcF;
TcQ = TcF + TcE;
}
{
E TcS, TcT, Tcv, Tcy;
TcS = FMA(KP707106781, Tcq, Tcp);
TcT = FMA(KP707106781, Tcn, Tcm);
TcU = FMA(KP198912367, TcT, TcS);
Td5 = FNMS(KP198912367, TcS, TcT);
Tcv = FNMS(KP707106781, Tcu, Tct);
Tcy = FNMS(KP707106781, Tcx, Tcw);
Tcz = FNMS(KP668178637, Tcy, Tcv);
TcL = FMA(KP668178637, Tcv, Tcy);
}
{
E Tcl, TcA, TcN, TcO;
Tcl = FMA(KP923879532, Tck, Tcd);
TcA = Tcs + Tcz;
ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl);
ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl);
TcN = FMA(KP923879532, TcG, TcD);
TcO = TcK + TcL;
io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN);
io[WS(os, 6)] = FMA(KP831469612, TcO, TcN);
}
{
E TcH, TcI, TcJ, TcM;
TcH = FNMS(KP923879532, TcG, TcD);
TcI = Tcz - Tcs;
io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH);
io[WS(os, 22)] = FMA(KP831469612, TcI, TcH);
TcJ = FNMS(KP923879532, Tck, Tcd);
TcM = TcK - TcL;
ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ);
ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ);
}
{
E TcR, TcY, Td3, Td6;
TcR = FNMS(KP923879532, TcQ, TcP);
TcY = TcU - TcX;
ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR);
ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR);
Td3 = FNMS(KP923879532, Td0, TcZ);
Td6 = Td4 - Td5;
io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3);
io[WS(os, 14)] = FMA(KP980785280, Td6, Td3);
}
{
E Td1, Td2, Td7, Td8;
Td1 = FMA(KP923879532, Td0, TcZ);
Td2 = TcU + TcX;
io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1);
io[WS(os, 62)] = FMA(KP980785280, Td2, Td1);
Td7 = FMA(KP923879532, TcQ, TcP);
Td8 = Td5 + Td4;
ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7);
ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7);
}
}
{
E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx;
E TbM, Tao, TbE;
Tao = Tak + Tan;
Tap = FNMS(KP707106781, Tao, Tah);
TbR = FMA(KP707106781, Tao, Tah);
TbE = TbC + TbD;
TbF = FNMS(KP707106781, TbE, TbB);
Tc1 = FMA(KP707106781, TbE, TbB);
{
E Taw, TaD, TbX, TbY;
Taw = FNMS(KP414213562, Tav, Tas);
TaD = FMA(KP414213562, TaC, Taz);
TaE = Taw - TaD;
Tc2 = Taw + TaD;
TbX = FMA(KP707106781, Tbv, Tbs);
TbY = FMA(KP707106781, Tbm, Tbb);
TbZ = FNMS(KP198912367, TbY, TbX);
Tc7 = FMA(KP198912367, TbX, TbY);
}
{
E TaW, Tb5, TbG, TbH;
TaW = FNMS(KP707106781, TaV, TaK);
Tb5 = FNMS(KP707106781, Tb4, Tb1);
Tb6 = FMA(KP668178637, Tb5, TaW);
TbN = FNMS(KP668178637, TaW, Tb5);
TbG = FNMS(KP414213562, Taz, TaC);
TbH = FMA(KP414213562, Tas, Tav);
TbI = TbG - TbH;
TbS = TbH + TbG;
}
{
E TbU, TbV, Tbn, Tbw;
TbU = FMA(KP707106781, Tb4, Tb1);
TbV = FMA(KP707106781, TaV, TaK);
TbW = FMA(KP198912367, TbV, TbU);
Tc6 = FNMS(KP198912367, TbU, TbV);
Tbn = FNMS(KP707106781, Tbm, Tbb);
Tbw = FNMS(KP707106781, Tbv, Tbs);
Tbx = FNMS(KP668178637, Tbw, Tbn);
TbM = FMA(KP668178637, Tbn, Tbw);
}
{
E TaF, Tby, TbL, TbO;
TaF = FMA(KP923879532, TaE, Tap);
Tby = Tb6 - Tbx;
ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF);
ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF);
TbL = FMA(KP923879532, TbI, TbF);
TbO = TbM - TbN;
io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL);
io[WS(os, 10)] = FMA(KP831469612, TbO, TbL);
}
{
E TbJ, TbK, TbP, TbQ;
TbJ = FNMS(KP923879532, TbI, TbF);
TbK = Tb6 + Tbx;
io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ);
io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ);
TbP = FNMS(KP923879532, TaE, Tap);
TbQ = TbN + TbM;
ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP);
ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP);
}
{
E TbT, Tc0, Tc9, Tca;
TbT = FMA(KP923879532, TbS, TbR);
Tc0 = TbW + TbZ;
ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT);
ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT);
Tc9 = FMA(KP923879532, Tc2, Tc1);
Tca = Tc6 + Tc7;
io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9);
io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9);
}
{
E Tc3, Tc4, Tc5, Tc8;
Tc3 = FNMS(KP923879532, Tc2, Tc1);
Tc4 = TbZ - TbW;
io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3);
io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3);
Tc5 = FNMS(KP923879532, TbS, TbR);
Tc8 = Tc6 - Tc7;
ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5);
ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5);
}
}
{
E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71;
E T7d;
{
E T6D, T6E, T7k, T7l;
T6D = FNMS(KP707106781, T3e, T37);
T6E = T65 + T64;
T6F = FNMS(KP923879532, T6E, T6D);
T7h = FMA(KP923879532, T6E, T6D);
T7k = FMA(KP923879532, T6S, T6R);
T7l = FMA(KP923879532, T6P, T6O);
T7m = FMA(KP098491403, T7l, T7k);
T7x = FNMS(KP098491403, T7k, T7l);
}
{
E T7n, T7o, T6I, T6L;
T7n = FMA(KP923879532, T6Z, T6Y);
T7o = FMA(KP923879532, T6W, T6V);
T7p = FNMS(KP098491403, T7o, T7n);
T7w = FMA(KP098491403, T7n, T7o);
T6I = FMA(KP198912367, T6H, T6G);
T6L = FNMS(KP198912367, T6K, T6J);
T6M = T6I - T6L;
T7s = T6I + T6L;
}
{
E T6Q, T6T, T73, T74;
T6Q = FNMS(KP923879532, T6P, T6O);
T6T = FNMS(KP923879532, T6S, T6R);
T6U = FMA(KP820678790, T6T, T6Q);
T7c = FNMS(KP820678790, T6Q, T6T);
T73 = FNMS(KP707106781, T62, T5Z);
T74 = T3m + T3t;
T75 = FNMS(KP923879532, T74, T73);
T7r = FMA(KP923879532, T74, T73);
}
{
E T76, T77, T6X, T70;
T76 = FMA(KP198912367, T6J, T6K);
T77 = FNMS(KP198912367, T6G, T6H);
T78 = T76 - T77;
T7i = T77 + T76;
T6X = FNMS(KP923879532, T6W, T6V);
T70 = FNMS(KP923879532, T6Z, T6Y);
T71 = FNMS(KP820678790, T70, T6X);
T7d = FMA(KP820678790, T6X, T70);
}
{
E T6N, T72, T7f, T7g;
T6N = FMA(KP980785280, T6M, T6F);
T72 = T6U + T71;
ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N);
ro[WS(os, 7)] = FMA(KP773010453, T72, T6N);
T7f = FMA(KP980785280, T78, T75);
T7g = T7c + T7d;
io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f);
io[WS(os, 7)] = FMA(KP773010453, T7g, T7f);
}
{
E T79, T7a, T7b, T7e;
T79 = FNMS(KP980785280, T78, T75);
T7a = T71 - T6U;
io[WS(os, 55)] = FNMS(KP773010453, T7a, T79);
io[WS(os, 23)] = FMA(KP773010453, T7a, T79);
T7b = FNMS(KP980785280, T6M, T6F);
T7e = T7c - T7d;
ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b);
ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b);
}
{
E T7j, T7q, T7v, T7y;
T7j = FNMS(KP980785280, T7i, T7h);
T7q = T7m - T7p;
ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j);
ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j);
T7v = FNMS(KP980785280, T7s, T7r);
T7y = T7w - T7x;
io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v);
io[WS(os, 15)] = FMA(KP995184726, T7y, T7v);
}
{
E T7t, T7u, T7z, T7A;
T7t = FMA(KP980785280, T7s, T7r);
T7u = T7m + T7p;
io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t);
io[WS(os, 63)] = FMA(KP995184726, T7u, T7t);
T7z = FMA(KP980785280, T7i, T7h);
T7A = T7x + T7w;
ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z);
ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z);
}
}
{
E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F;
E T9R;
{
E T9h, T9i, T9Y, T9Z;
T9h = FNMS(KP707106781, T7C, T7B);
T9i = T8I - T8J;
T9j = FMA(KP923879532, T9i, T9h);
T9V = FNMS(KP923879532, T9i, T9h);
T9Y = FMA(KP923879532, T9w, T9v);
T9Z = FMA(KP923879532, T9t, T9s);
Ta0 = FMA(KP303346683, T9Z, T9Y);
Tab = FNMS(KP303346683, T9Y, T9Z);
}
{
E Ta1, Ta2, T9m, T9p;
Ta1 = FMA(KP923879532, T9D, T9C);
Ta2 = FMA(KP923879532, T9A, T9z);
Ta3 = FNMS(KP303346683, Ta2, Ta1);
Taa = FMA(KP303346683, Ta1, Ta2);
T9m = FMA(KP668178637, T9l, T9k);
T9p = FNMS(KP668178637, T9o, T9n);
T9q = T9m - T9p;
Ta6 = T9m + T9p;
}
{
E T9u, T9x, T9H, T9I;
T9u = FNMS(KP923879532, T9t, T9s);
T9x = FNMS(KP923879532, T9w, T9v);
T9y = FMA(KP534511135, T9x, T9u);
T9Q = FNMS(KP534511135, T9u, T9x);
T9H = FNMS(KP707106781, T8G, T8F);
T9I = T7J - T7G;
T9J = FMA(KP923879532, T9I, T9H);
Ta5 = FNMS(KP923879532, T9I, T9H);
}
{
E T9K, T9L, T9B, T9E;
T9K = FMA(KP668178637, T9n, T9o);
T9L = FNMS(KP668178637, T9k, T9l);
T9M = T9K - T9L;
T9W = T9L + T9K;
T9B = FNMS(KP923879532, T9A, T9z);
T9E = FNMS(KP923879532, T9D, T9C);
T9F = FNMS(KP534511135, T9E, T9B);
T9R = FMA(KP534511135, T9B, T9E);
}
{
E T9r, T9G, T9T, T9U;
T9r = FMA(KP831469612, T9q, T9j);
T9G = T9y + T9F;
ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r);
ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r);
T9T = FMA(KP831469612, T9M, T9J);
T9U = T9Q + T9R;
io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T);
io[WS(os, 5)] = FMA(KP881921264, T9U, T9T);
}
{
E T9N, T9O, T9P, T9S;
T9N = FNMS(KP831469612, T9M, T9J);
T9O = T9F - T9y;
io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N);
io[WS(os, 21)] = FMA(KP881921264, T9O, T9N);
T9P = FNMS(KP831469612, T9q, T9j);
T9S = T9Q - T9R;
ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P);
ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P);
}
{
E T9X, Ta4, Ta9, Tac;
T9X = FNMS(KP831469612, T9W, T9V);
Ta4 = Ta0 - Ta3;
ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X);
ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X);
Ta9 = FNMS(KP831469612, Ta6, Ta5);
Tac = Taa - Tab;
io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9);
io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9);
}
{
E Ta7, Ta8, Tad, Tae;
Ta7 = FMA(KP831469612, Ta6, Ta5);
Ta8 = Ta0 + Ta3;
io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7);
io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7);
Tad = FMA(KP831469612, T9W, T9V);
Tae = Tab + Taa;
ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad);
ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad);
}
}
{
E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V;
E T6e;
{
E T3f, T3u, T6m, T6n;
T3f = FMA(KP707106781, T3e, T37);
T3u = T3m - T3t;
T3v = FNMS(KP923879532, T3u, T3f);
T6j = FMA(KP923879532, T3u, T3f);
T6m = FMA(KP923879532, T50, T4X);
T6n = FMA(KP923879532, T4N, T4q);
T6o = FMA(KP303346683, T6n, T6m);
T6y = FNMS(KP303346683, T6m, T6n);
}
{
E T6p, T6q, T3O, T47;
T6p = FMA(KP923879532, T5T, T5Q);
T6q = FMA(KP923879532, T5G, T5j);
T6r = FNMS(KP303346683, T6q, T6p);
T6z = FMA(KP303346683, T6p, T6q);
T3O = FNMS(KP668178637, T3N, T3G);
T47 = FMA(KP668178637, T46, T3Z);
T48 = T3O - T47;
T6u = T3O + T47;
}
{
E T4O, T51, T63, T66;
T4O = FNMS(KP923879532, T4N, T4q);
T51 = FNMS(KP923879532, T50, T4X);
T52 = FMA(KP534511135, T51, T4O);
T6f = FNMS(KP534511135, T4O, T51);
T63 = FMA(KP707106781, T62, T5Z);
T66 = T64 - T65;
T67 = FNMS(KP923879532, T66, T63);
T6t = FMA(KP923879532, T66, T63);
}
{
E T68, T69, T5H, T5U;
T68 = FNMS(KP668178637, T3Z, T46);
T69 = FMA(KP668178637, T3G, T3N);
T6a = T68 - T69;
T6k = T69 + T68;
T5H = FNMS(KP923879532, T5G, T5j);
T5U = FNMS(KP923879532, T5T, T5Q);
T5V = FNMS(KP534511135, T5U, T5H);
T6e = FMA(KP534511135, T5H, T5U);
}
{
E T49, T5W, T6d, T6g;
T49 = FMA(KP831469612, T48, T3v);
T5W = T52 - T5V;
ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49);
ro[WS(os, 11)] = FMA(KP881921264, T5W, T49);
T6d = FMA(KP831469612, T6a, T67);
T6g = T6e - T6f;
io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d);
io[WS(os, 11)] = FMA(KP881921264, T6g, T6d);
}
{
E T6b, T6c, T6h, T6i;
T6b = FNMS(KP831469612, T6a, T67);
T6c = T52 + T5V;
io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b);
io[WS(os, 59)] = FMA(KP881921264, T6c, T6b);
T6h = FNMS(KP831469612, T48, T3v);
T6i = T6f + T6e;
ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h);
ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h);
}
{
E T6l, T6s, T6B, T6C;
T6l = FMA(KP831469612, T6k, T6j);
T6s = T6o + T6r;
ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l);
ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l);
T6B = FMA(KP831469612, T6u, T6t);
T6C = T6y + T6z;
io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B);
io[WS(os, 3)] = FMA(KP956940335, T6C, T6B);
}
{
E T6v, T6w, T6x, T6A;
T6v = FNMS(KP831469612, T6u, T6t);
T6w = T6r - T6o;
io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v);
io[WS(os, 19)] = FMA(KP956940335, T6w, T6v);
T6x = FNMS(KP831469612, T6k, T6j);
T6A = T6y - T6z;
ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x);
ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x);
}
}
{
E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D;
E T8S;
{
E T7D, T7K, T90, T91;
T7D = FMA(KP707106781, T7C, T7B);
T7K = T7G + T7J;
T7L = FNMS(KP923879532, T7K, T7D);
T8X = FMA(KP923879532, T7K, T7D);
T90 = FMA(KP923879532, T8i, T8f);
T91 = FMA(KP923879532, T8b, T84);
T92 = FMA(KP098491403, T91, T90);
T9c = FNMS(KP098491403, T90, T91);
}
{
E T93, T94, T7S, T7Z;
T93 = FMA(KP923879532, T8B, T8y);
T94 = FMA(KP923879532, T8u, T8n);
T95 = FNMS(KP098491403, T94, T93);
T9d = FMA(KP098491403, T93, T94);
T7S = FNMS(KP198912367, T7R, T7O);
T7Z = FMA(KP198912367, T7Y, T7V);
T80 = T7S - T7Z;
T98 = T7S + T7Z;
}
{
E T8c, T8j, T8H, T8K;
T8c = FNMS(KP923879532, T8b, T84);
T8j = FNMS(KP923879532, T8i, T8f);
T8k = FMA(KP820678790, T8j, T8c);
T8T = FNMS(KP820678790, T8c, T8j);
T8H = FMA(KP707106781, T8G, T8F);
T8K = T8I + T8J;
T8L = FNMS(KP923879532, T8K, T8H);
T97 = FMA(KP923879532, T8K, T8H);
}
{
E T8M, T8N, T8v, T8C;
T8M = FNMS(KP198912367, T7V, T7Y);
T8N = FMA(KP198912367, T7O, T7R);
T8O = T8M - T8N;
T8Y = T8N + T8M;
T8v = FNMS(KP923879532, T8u, T8n);
T8C = FNMS(KP923879532, T8B, T8y);
T8D = FNMS(KP820678790, T8C, T8v);
T8S = FMA(KP820678790, T8v, T8C);
}
{
E T81, T8E, T8R, T8U;
T81 = FMA(KP980785280, T80, T7L);
T8E = T8k - T8D;
ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81);
ro[WS(os, 9)] = FMA(KP773010453, T8E, T81);
T8R = FMA(KP980785280, T8O, T8L);
T8U = T8S - T8T;
io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R);
io[WS(os, 9)] = FMA(KP773010453, T8U, T8R);
}
{
E T8P, T8Q, T8V, T8W;
T8P = FNMS(KP980785280, T8O, T8L);
T8Q = T8k + T8D;
io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P);
io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P);
T8V = FNMS(KP980785280, T80, T7L);
T8W = T8T + T8S;
ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V);
ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V);
}
{
E T8Z, T96, T9f, T9g;
T8Z = FMA(KP980785280, T8Y, T8X);
T96 = T92 + T95;
ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z);
ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z);
T9f = FMA(KP980785280, T98, T97);
T9g = T9c + T9d;
io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f);
io[WS(os, 1)] = FMA(KP995184726, T9g, T9f);
}
{
E T99, T9a, T9b, T9e;
T99 = FNMS(KP980785280, T98, T97);
T9a = T95 - T92;
io[WS(os, 49)] = FNMS(KP995184726, T9a, T99);
io[WS(os, 17)] = FMA(KP995184726, T9a, T99);
T9b = FNMS(KP980785280, T8Y, T8X);
T9e = T9c - T9d;
ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b);
ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b);
}
}
}
}
}
static const kdft_desc desc = { 64, "n1_64", { 520, 0, 392, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc);
}
#else
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
/*
* This function contains 912 FP additions, 248 FP multiplications,
* (or, 808 additions, 144 multiplications, 104 fused multiply/add),
* 172 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/n.h"
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
{
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT i;
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) {
E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e;
E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I;
E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R;
E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C;
E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V;
E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O;
E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50;
E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z;
E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D;
{
E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g;
E T3c;
{
E T1, T2, T24, T25;
T1 = ri[0];
T2 = ri[WS(is, 32)];
T3 = T1 + T2;
T35 = T1 - T2;
T24 = ii[0];
T25 = ii[WS(is, 32)];
T26 = T24 + T25;
T5Y = T24 - T25;
}
{
E T4, T5, T27, T28;
T4 = ri[WS(is, 16)];
T5 = ri[WS(is, 48)];
T6 = T4 + T5;
T5X = T4 - T5;
T27 = ii[WS(is, 16)];
T28 = ii[WS(is, 48)];
T29 = T27 + T28;
T36 = T27 - T28;
}
{
E T8, T9, T2b, T2c;
T8 = ri[WS(is, 8)];
T9 = ri[WS(is, 40)];
Ta = T8 + T9;
T39 = T8 - T9;
T2b = ii[WS(is, 8)];
T2c = ii[WS(is, 40)];
T2d = T2b + T2c;
T38 = T2b - T2c;
}
{
E Tb, Tc, T2e, T2f;
Tb = ri[WS(is, 56)];
Tc = ri[WS(is, 24)];
Td = Tb + Tc;
T3b = Tb - Tc;
T2e = ii[WS(is, 56)];
T2f = ii[WS(is, 24)];
T2g = T2e + T2f;
T3c = T2e - T2f;
}
{
E T7, Te, T2a, T2h;
T37 = T35 - T36;
T7B = T35 + T36;
T8F = T5Y - T5X;
T5Z = T5X + T5Y;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
Td9 = T7 - Te;
{
E Tbz, TbA, T60, T61;
Tbz = T26 - T29;
TbA = Td - Ta;
TbB = Tbz - TbA;
TcB = TbA + Tbz;
T60 = T3b - T3c;
T61 = T39 + T38;
T62 = KP707106781 * (T60 - T61);
T7C = KP707106781 * (T61 + T60);
}
T2a = T26 + T29;
T2h = T2d + T2g;
T2i = T2a + T2h;
TdH = T2a - T2h;
{
E Taf, Tag, T3a, T3d;
Taf = T3 - T6;
Tag = T2d - T2g;
Tah = Taf - Tag;
Tcb = Taf + Tag;
T3a = T38 - T39;
T3d = T3b + T3c;
T3e = KP707106781 * (T3a - T3d);
T8G = KP707106781 * (T3a + T3d);
}
}
}
{
E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v;
E T3r;
{
E Tg, Th, T2j, T2k;
Tg = ri[WS(is, 4)];
Th = ri[WS(is, 36)];
Ti = Tg + Th;
T3j = Tg - Th;
T2j = ii[WS(is, 4)];
T2k = ii[WS(is, 36)];
T2l = T2j + T2k;
T3h = T2j - T2k;
}
{
E Tj, Tk, T2m, T2n;
Tj = ri[WS(is, 20)];
Tk = ri[WS(is, 52)];
Tl = Tj + Tk;
T3g = Tj - Tk;
T2m = ii[WS(is, 20)];
T2n = ii[WS(is, 52)];
T2o = T2m + T2n;
T3k = T2m - T2n;
}
{
E Tn, To, T2q, T2r;
Tn = ri[WS(is, 60)];
To = ri[WS(is, 28)];
Tp = Tn + To;
T3q = Tn - To;
T2q = ii[WS(is, 60)];
T2r = ii[WS(is, 28)];
T2s = T2q + T2r;
T3o = T2q - T2r;
}
{
E Tq, Tr, T2t, T2u;
Tq = ri[WS(is, 12)];
Tr = ri[WS(is, 44)];
Ts = Tq + Tr;
T3n = Tq - Tr;
T2t = ii[WS(is, 12)];
T2u = ii[WS(is, 44)];
T2v = T2t + T2u;
T3r = T2t - T2u;
}
{
E Tm, Tt, Tai, Taj;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
TdI = Tt - Tm;
Tai = T2l - T2o;
Taj = Ti - Tl;
Tak = Tai - Taj;
TbD = Taj + Tai;
}
{
E Tal, Tam, T2p, T2w;
Tal = Tp - Ts;
Tam = T2s - T2v;
Tan = Tal + Tam;
TbC = Tal - Tam;
T2p = T2l + T2o;
T2w = T2s + T2v;
T2x = T2p + T2w;
Tda = T2p - T2w;
}
{
E T3i, T3l, T7E, T7F;
T3i = T3g + T3h;
T3l = T3j - T3k;
T3m = FNMS(KP923879532, T3l, KP382683432 * T3i);
T65 = FMA(KP923879532, T3i, KP382683432 * T3l);
T7E = T3h - T3g;
T7F = T3j + T3k;
T7G = FNMS(KP382683432, T7F, KP923879532 * T7E);
T8J = FMA(KP382683432, T7E, KP923879532 * T7F);
}
{
E T7H, T7I, T3p, T3s;
T7H = T3o - T3n;
T7I = T3q + T3r;
T7J = FMA(KP923879532, T7H, KP382683432 * T7I);
T8I = FNMS(KP382683432, T7H, KP923879532 * T7I);
T3p = T3n + T3o;
T3s = T3q - T3r;
T3t = FMA(KP382683432, T3p, KP923879532 * T3s);
T64 = FNMS(KP923879532, T3p, KP382683432 * T3s);
}
}
{
E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I;
E T3E;
{
E Tw, Tx, T2C, T2D;
Tw = ri[WS(is, 2)];
Tx = ri[WS(is, 34)];
Ty = Tw + Tx;
T3H = Tw - Tx;
{
E T2z, T2A, Tz, TA;
T2z = ii[WS(is, 2)];
T2A = ii[WS(is, 34)];
T2B = T2z + T2A;
T3x = T2z - T2A;
Tz = ri[WS(is, 18)];
TA = ri[WS(is, 50)];
TB = Tz + TA;
T3w = Tz - TA;
}
T2C = ii[WS(is, 18)];
T2D = ii[WS(is, 50)];
T2E = T2C + T2D;
T3I = T2C - T2D;
{
E TG, TH, T3z, T2J, T2K, T3A;
TG = ri[WS(is, 58)];
TH = ri[WS(is, 26)];
T3z = TG - TH;
T2J = ii[WS(is, 58)];
T2K = ii[WS(is, 26)];
T3A = T2J - T2K;
TI = TG + TH;
T3L = T3z + T3A;
T2L = T2J + T2K;
T3B = T3z - T3A;
}
{
E TD, TE, T3C, T2G, T2H, T3D;
TD = ri[WS(is, 10)];
TE = ri[WS(is, 42)];
T3C = TD - TE;
T2G = ii[WS(is, 10)];
T2H = ii[WS(is, 42)];
T3D = T2G - T2H;
TF = TD + TE;
T3K = T3D - T3C;
T2I = T2G + T2H;
T3E = T3C + T3D;
}
}
{
E TC, TJ, Taq, Tar;
TC = Ty + TB;
TJ = TF + TI;
TK = TC + TJ;
Tdd = TC - TJ;
Taq = T2B - T2E;
Tar = TI - TF;
Tas = Taq - Tar;
Tce = Tar + Taq;
}
{
E Tat, Tau, T2F, T2M;
Tat = Ty - TB;
Tau = T2I - T2L;
Tav = Tat - Tau;
Tcf = Tat + Tau;
T2F = T2B + T2E;
T2M = T2I + T2L;
T2N = T2F + T2M;
Tdc = T2F - T2M;
}
{
E T3y, T3F, T7M, T7N;
T3y = T3w + T3x;
T3F = KP707106781 * (T3B - T3E);
T3G = T3y - T3F;
T6G = T3y + T3F;
T7M = T3x - T3w;
T7N = KP707106781 * (T3K + T3L);
T7O = T7M - T7N;
T9k = T7M + T7N;
}
{
E T7P, T7Q, T3J, T3M;
T7P = T3H + T3I;
T7Q = KP707106781 * (T3E + T3B);
T7R = T7P - T7Q;
T9l = T7P + T7Q;
T3J = T3H - T3I;
T3M = KP707106781 * (T3K - T3L);
T3N = T3J - T3M;
T6H = T3J + T3M;
}
}
{
E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c;
E T5O;
{
E T1x, T1y, T54, T55;
T1x = ri[WS(is, 63)];
T1y = ri[WS(is, 31)];
T1z = T1x + T1y;
T53 = T1x - T1y;
{
E T5J, T5K, T1A, T1B;
T5J = ii[WS(is, 63)];
T5K = ii[WS(is, 31)];
T5L = T5J - T5K;
Tbo = T5J + T5K;
T1A = ri[WS(is, 15)];
T1B = ri[WS(is, 47)];
T1C = T1A + T1B;
T5I = T1A - T1B;
}
T54 = ii[WS(is, 15)];
T55 = ii[WS(is, 47)];
T56 = T54 - T55;
Tbp = T54 + T55;
{
E T1H, T1I, T5d, T5e, T5f, T5g;
T1H = ri[WS(is, 55)];
T1I = ri[WS(is, 23)];
T5d = T1H - T1I;
T5e = ii[WS(is, 55)];
T5f = ii[WS(is, 23)];
T5g = T5e - T5f;
T1J = T1H + T1I;
Tb9 = T5e + T5f;
T5h = T5d + T5g;
T5N = T5d - T5g;
}
{
E T1E, T1F, T5b, T58, T59, T5a;
T1E = ri[WS(is, 7)];
T1F = ri[WS(is, 39)];
T5b = T1E - T1F;
T58 = ii[WS(is, 7)];
T59 = ii[WS(is, 39)];
T5a = T58 - T59;
T1G = T1E + T1F;
Tb8 = T58 + T59;
T5c = T5a - T5b;
T5O = T5b + T5a;
}
}
{
E T1D, T1K, Tbq, Tbr;
T1D = T1z + T1C;
T1K = T1G + T1J;
T1L = T1D + T1K;
Tdv = T1D - T1K;
Tbq = Tbo - Tbp;
Tbr = T1J - T1G;
Tbs = Tbq - Tbr;
Tcw = Tbr + Tbq;
}
{
E TdA, TdB, T57, T5i;
TdA = Tbo + Tbp;
TdB = Tb8 + Tb9;
TdC = TdA - TdB;
Teo = TdA + TdB;
T57 = T53 - T56;
T5i = KP707106781 * (T5c - T5h);
T5j = T57 - T5i;
T6V = T57 + T5i;
}
{
E T5M, T5P, T8w, T8x;
T5M = T5I + T5L;
T5P = KP707106781 * (T5N - T5O);
T5Q = T5M - T5P;
T6Y = T5M + T5P;
T8w = T5L - T5I;
T8x = KP707106781 * (T5c + T5h);
T8y = T8w - T8x;
T9C = T8w + T8x;
}
{
E Tb7, Tba, T8l, T8m;
Tb7 = T1z - T1C;
Tba = Tb8 - Tb9;
Tbb = Tb7 - Tba;
Tct = Tb7 + Tba;
T8l = T53 + T56;
T8m = KP707106781 * (T5O + T5N);
T8n = T8l - T8m;
T9z = T8l + T8m;
}
}
{
E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X;
E T3X;
{
E TL, TM, T2R, T2S;
TL = ri[WS(is, 62)];
TM = ri[WS(is, 30)];
TN = TL + TM;
T40 = TL - TM;
{
E T2O, T2P, TO, TP;
T2O = ii[WS(is, 62)];
T2P = ii[WS(is, 30)];
T2Q = T2O + T2P;
T3Q = T2O - T2P;
TO = ri[WS(is, 14)];
TP = ri[WS(is, 46)];
TQ = TO + TP;
T3P = TO - TP;
}
T2R = ii[WS(is, 14)];
T2S = ii[WS(is, 46)];
T2T = T2R + T2S;
T41 = T2R - T2S;
{
E TV, TW, T3S, T2Y, T2Z, T3T;
TV = ri[WS(is, 54)];
TW = ri[WS(is, 22)];
T3S = TV - TW;
T2Y = ii[WS(is, 54)];
T2Z = ii[WS(is, 22)];
T3T = T2Y - T2Z;
TX = TV + TW;
T44 = T3S + T3T;
T30 = T2Y + T2Z;
T3U = T3S - T3T;
}
{
E TS, TT, T3V, T2V, T2W, T3W;
TS = ri[WS(is, 6)];
TT = ri[WS(is, 38)];
T3V = TS - TT;
T2V = ii[WS(is, 6)];
T2W = ii[WS(is, 38)];
T3W = T2V - T2W;
TU = TS + TT;
T43 = T3W - T3V;
T2X = T2V + T2W;
T3X = T3V + T3W;
}
}
{
E TR, TY, Tax, Tay;
TR = TN + TQ;
TY = TU + TX;
TZ = TR + TY;
Tdf = TR - TY;
Tax = T2Q - T2T;
Tay = TX - TU;
Taz = Tax - Tay;
Tch = Tay + Tax;
}
{
E TaA, TaB, T2U, T31;
TaA = TN - TQ;
TaB = T2X - T30;
TaC = TaA - TaB;
Tci = TaA + TaB;
T2U = T2Q + T2T;
T31 = T2X + T30;
T32 = T2U + T31;
Tdg = T2U - T31;
}
{
E T3R, T3Y, T7T, T7U;
T3R = T3P + T3Q;
T3Y = KP707106781 * (T3U - T3X);
T3Z = T3R - T3Y;
T6J = T3R + T3Y;
T7T = T40 + T41;
T7U = KP707106781 * (T3X + T3U);
T7V = T7T - T7U;
T9n = T7T + T7U;
}
{
E T7W, T7X, T42, T45;
T7W = T3Q - T3P;
T7X = KP707106781 * (T43 + T44);
T7Y = T7W - T7X;
T9o = T7W + T7X;
T42 = T40 - T41;
T45 = KP707106781 * (T43 - T44);
T46 = T42 - T45;
T6K = T42 + T45;
}
}
{
E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o;
E T4U;
{
E T12, T13, T4Q, T4R;
T12 = ri[WS(is, 1)];
T13 = ri[WS(is, 33)];
T14 = T12 + T13;
T4P = T12 - T13;
{
E T4b, T4c, T15, T16;
T4b = ii[WS(is, 1)];
T4c = ii[WS(is, 33)];
T4d = T4b - T4c;
TaG = T4b + T4c;
T15 = ri[WS(is, 17)];
T16 = ri[WS(is, 49)];
T17 = T15 + T16;
T4a = T15 - T16;
}
T4Q = ii[WS(is, 17)];
T4R = ii[WS(is, 49)];
T4S = T4Q - T4R;
TaH = T4Q + T4R;
{
E T1c, T1d, T4f, T4g, T4h, T4i;
T1c = ri[WS(is, 57)];
T1d = ri[WS(is, 25)];
T4f = T1c - T1d;
T4g = ii[WS(is, 57)];
T4h = ii[WS(is, 25)];
T4i = T4g - T4h;
T1e = T1c + T1d;
TaZ = T4g + T4h;
T4j = T4f - T4i;
T4V = T4f + T4i;
}
{
E T19, T1a, T4k, T4l, T4m, T4n;
T19 = ri[WS(is, 9)];
T1a = ri[WS(is, 41)];
T4k = T19 - T1a;
T4l = ii[WS(is, 9)];
T4m = ii[WS(is, 41)];
T4n = T4l - T4m;
T1b = T19 + T1a;
TaY = T4l + T4m;
T4o = T4k + T4n;
T4U = T4n - T4k;
}
}
{
E T18, T1f, TaX, Tb0;
T18 = T14 + T17;
T1f = T1b + T1e;
T1g = T18 + T1f;
Tdp = T18 - T1f;
TaX = T14 - T17;
Tb0 = TaY - TaZ;
Tb1 = TaX - Tb0;
Tcm = TaX + Tb0;
}
{
E Tdk, Tdl, T4e, T4p;
Tdk = TaG + TaH;
Tdl = TaY + TaZ;
Tdm = Tdk - Tdl;
Tej = Tdk + Tdl;
T4e = T4a + T4d;
T4p = KP707106781 * (T4j - T4o);
T4q = T4e - T4p;
T6R = T4e + T4p;
}
{
E T4T, T4W, T8d, T8e;
T4T = T4P - T4S;
T4W = KP707106781 * (T4U - T4V);
T4X = T4T - T4W;
T6O = T4T + T4W;
T8d = T4P + T4S;
T8e = KP707106781 * (T4o + T4j);
T8f = T8d - T8e;
T9s = T8d + T8e;
}
{
E TaI, TaJ, T82, T83;
TaI = TaG - TaH;
TaJ = T1e - T1b;
TaK = TaI - TaJ;
Tcp = TaJ + TaI;
T82 = T4d - T4a;
T83 = KP707106781 * (T4U + T4V);
T84 = T82 - T83;
T9v = T82 + T83;
}
}
{
E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v;
E T4A, TaO, TaL, T86, T85;
{
E T4H, T4F, T4C, T4K;
{
E T1h, T1i, T4D, T4E;
T1h = ri[WS(is, 5)];
T1i = ri[WS(is, 37)];
T1j = T1h + T1i;
T4H = T1h - T1i;
T4D = ii[WS(is, 5)];
T4E = ii[WS(is, 37)];
T4F = T4D - T4E;
TaR = T4D + T4E;
}
{
E T1k, T1l, T4I, T4J;
T1k = ri[WS(is, 21)];
T1l = ri[WS(is, 53)];
T1m = T1k + T1l;
T4C = T1k - T1l;
T4I = ii[WS(is, 21)];
T4J = ii[WS(is, 53)];
T4K = T4I - T4J;
TaS = T4I + T4J;
}
T4G = T4C + T4F;
T4L = T4H - T4K;
TaT = TaR - TaS;
TaQ = T1j - T1m;
T89 = T4H + T4K;
T88 = T4F - T4C;
}
{
E T4r, T4z, T4w, T4u;
{
E T1o, T1p, T4x, T4y;
T1o = ri[WS(is, 61)];
T1p = ri[WS(is, 29)];
T1q = T1o + T1p;
T4r = T1o - T1p;
T4x = ii[WS(is, 61)];
T4y = ii[WS(is, 29)];
T4z = T4x - T4y;
TaM = T4x + T4y;
}
{
E T1r, T1s, T4s, T4t;
T1r = ri[WS(is, 13)];
T1s = ri[WS(is, 45)];
T1t = T1r + T1s;
T4w = T1r - T1s;
T4s = ii[WS(is, 13)];
T4t = ii[WS(is, 45)];
T4u = T4s - T4t;
TaN = T4s + T4t;
}
T4v = T4r - T4u;
T4A = T4w + T4z;
TaO = TaM - TaN;
TaL = T1q - T1t;
T86 = T4z - T4w;
T85 = T4r + T4u;
}
{
E T1n, T1u, Tb2, Tb3;
T1n = T1j + T1m;
T1u = T1q + T1t;
T1v = T1n + T1u;
Tdn = T1u - T1n;
Tb2 = TaT - TaQ;
Tb3 = TaL + TaO;
Tb4 = KP707106781 * (Tb2 - Tb3);
Tcq = KP707106781 * (Tb2 + Tb3);
}
{
E Tdq, Tdr, T4B, T4M;
Tdq = TaR + TaS;
Tdr = TaM + TaN;
Tds = Tdq - Tdr;
Tek = Tdq + Tdr;
T4B = FNMS(KP923879532, T4A, KP382683432 * T4v);
T4M = FMA(KP923879532, T4G, KP382683432 * T4L);
T4N = T4B - T4M;
T6P = T4M + T4B;
}
{
E T4Y, T4Z, T8g, T8h;
T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G);
T4Z = FMA(KP382683432, T4A, KP923879532 * T4v);
T50 = T4Y - T4Z;
T6S = T4Y + T4Z;
T8g = FNMS(KP382683432, T89, KP923879532 * T88);
T8h = FMA(KP923879532, T86, KP382683432 * T85);
T8i = T8g - T8h;
T9w = T8g + T8h;
}
{
E TaP, TaU, T87, T8a;
TaP = TaL - TaO;
TaU = TaQ + TaT;
TaV = KP707106781 * (TaP - TaU);
Tcn = KP707106781 * (TaU + TaP);
T87 = FNMS(KP382683432, T86, KP923879532 * T85);
T8a = FMA(KP382683432, T88, KP923879532 * T89);
T8b = T87 - T8a;
T9t = T8a + T87;
}
}
{
E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z;
E T5E, Tbk, Tbh, T8s, T8r;
{
E T5p, T5n, T5k, T5s;
{
E T1M, T1N, T5l, T5m;
T1M = ri[WS(is, 3)];
T1N = ri[WS(is, 35)];
T1O = T1M + T1N;
T5p = T1M - T1N;
T5l = ii[WS(is, 3)];
T5m = ii[WS(is, 35)];
T5n = T5l - T5m;
Tbc = T5l + T5m;
}
{
E T1P, T1Q, T5q, T5r;
T1P = ri[WS(is, 19)];
T1Q = ri[WS(is, 51)];
T1R = T1P + T1Q;
T5k = T1P - T1Q;
T5q = ii[WS(is, 19)];
T5r = ii[WS(is, 51)];
T5s = T5q - T5r;
Tbd = T5q + T5r;
}
T5o = T5k + T5n;
T5t = T5p - T5s;
Tbf = T1O - T1R;
Tbe = Tbc - Tbd;
T8p = T5p + T5s;
T8o = T5n - T5k;
}
{
E T5A, T5y, T5v, T5D;
{
E T1T, T1U, T5w, T5x;
T1T = ri[WS(is, 59)];
T1U = ri[WS(is, 27)];
T1V = T1T + T1U;
T5A = T1T - T1U;
T5w = ii[WS(is, 59)];
T5x = ii[WS(is, 27)];
T5y = T5w - T5x;
Tbi = T5w + T5x;
}
{
E T1W, T1X, T5B, T5C;
T1W = ri[WS(is, 11)];
T1X = ri[WS(is, 43)];
T1Y = T1W + T1X;
T5v = T1W - T1X;
T5B = ii[WS(is, 11)];
T5C = ii[WS(is, 43)];
T5D = T5B - T5C;
Tbj = T5B + T5C;
}
T5z = T5v + T5y;
T5E = T5A - T5D;
Tbk = Tbi - Tbj;
Tbh = T1V - T1Y;
T8s = T5A + T5D;
T8r = T5y - T5v;
}
{
E T1S, T1Z, Tbt, Tbu;
T1S = T1O + T1R;
T1Z = T1V + T1Y;
T20 = T1S + T1Z;
TdD = T1Z - T1S;
Tbt = Tbh - Tbk;
Tbu = Tbf + Tbe;
Tbv = KP707106781 * (Tbt - Tbu);
Tcu = KP707106781 * (Tbu + Tbt);
}
{
E Tdw, Tdx, T5u, T5F;
Tdw = Tbc + Tbd;
Tdx = Tbi + Tbj;
Tdy = Tdw - Tdx;
Tep = Tdw + Tdx;
T5u = FNMS(KP923879532, T5t, KP382683432 * T5o);
T5F = FMA(KP382683432, T5z, KP923879532 * T5E);
T5G = T5u - T5F;
T6Z = T5u + T5F;
}
{
E T5R, T5S, T8z, T8A;
T5R = FNMS(KP923879532, T5z, KP382683432 * T5E);
T5S = FMA(KP923879532, T5o, KP382683432 * T5t);
T5T = T5R - T5S;
T6W = T5S + T5R;
T8z = FNMS(KP382683432, T8r, KP923879532 * T8s);
T8A = FMA(KP382683432, T8o, KP923879532 * T8p);
T8B = T8z - T8A;
T9A = T8A + T8z;
}
{
E Tbg, Tbl, T8q, T8t;
Tbg = Tbe - Tbf;
Tbl = Tbh + Tbk;
Tbm = KP707106781 * (Tbg - Tbl);
Tcx = KP707106781 * (Tbg + Tbl);
T8q = FNMS(KP382683432, T8p, KP923879532 * T8o);
T8t = FMA(KP923879532, T8r, KP382683432 * T8s);
T8u = T8q - T8t;
T9D = T8q + T8t;
}
}
{
E T11, TeD, TeG, TeI, T22, T23, T34, TeH;
{
E Tv, T10, TeE, TeF;
Tv = Tf + Tu;
T10 = TK + TZ;
T11 = Tv + T10;
TeD = Tv - T10;
TeE = Tej + Tek;
TeF = Teo + Tep;
TeG = TeE - TeF;
TeI = TeE + TeF;
}
{
E T1w, T21, T2y, T33;
T1w = T1g + T1v;
T21 = T1L + T20;
T22 = T1w + T21;
T23 = T21 - T1w;
T2y = T2i + T2x;
T33 = T2N + T32;
T34 = T2y - T33;
TeH = T2y + T33;
}
ro[WS(os, 32)] = T11 - T22;
io[WS(os, 32)] = TeH - TeI;
ro[0] = T11 + T22;
io[0] = TeH + TeI;
io[WS(os, 16)] = T23 + T34;
ro[WS(os, 16)] = TeD + TeG;
io[WS(os, 48)] = T34 - T23;
ro[WS(os, 48)] = TeD - TeG;
}
{
E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez;
{
E Tef, Teg, Tet, Teu;
Tef = Tf - Tu;
Teg = T2N - T32;
Teh = Tef + Teg;
Tex = Tef - Teg;
Tet = T2i - T2x;
Teu = TZ - TK;
Tev = Tet - Teu;
TeB = Teu + Tet;
}
{
E Tei, Tel, Ten, Teq;
Tei = T1g - T1v;
Tel = Tej - Tek;
Tem = Tei + Tel;
Tey = Tel - Tei;
Ten = T1L - T20;
Teq = Teo - Tep;
Ter = Ten - Teq;
Tez = Ten + Teq;
}
{
E Tes, TeC, Tew, TeA;
Tes = KP707106781 * (Tem + Ter);
ro[WS(os, 40)] = Teh - Tes;
ro[WS(os, 8)] = Teh + Tes;
TeC = KP707106781 * (Tey + Tez);
io[WS(os, 40)] = TeB - TeC;
io[WS(os, 8)] = TeB + TeC;
Tew = KP707106781 * (Ter - Tem);
io[WS(os, 56)] = Tev - Tew;
io[WS(os, 24)] = Tev + Tew;
TeA = KP707106781 * (Tey - Tez);
ro[WS(os, 56)] = Tex - TeA;
ro[WS(os, 24)] = Tex + TeA;
}
}
{
E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF;
E TdR;
{
E Tde, Tdh, Tdo, Tdt;
Tdb = Td9 - Tda;
TdV = Td9 + Tda;
Te5 = TdI + TdH;
TdJ = TdH - TdI;
Tde = Tdc - Tdd;
Tdh = Tdf + Tdg;
Tdi = KP707106781 * (Tde - Tdh);
Te6 = KP707106781 * (Tde + Tdh);
{
E Te1, Te2, TdK, TdL;
Te1 = Tdv + Tdy;
Te2 = TdD + TdC;
Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1);
Teb = FMA(KP923879532, Te2, KP382683432 * Te1);
TdK = Tdf - Tdg;
TdL = Tdd + Tdc;
TdM = KP707106781 * (TdK - TdL);
TdW = KP707106781 * (TdL + TdK);
}
Tdo = Tdm - Tdn;
Tdt = Tdp - Tds;
Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt);
TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo);
{
E TdY, TdZ, Tdz, TdE;
TdY = Tdn + Tdm;
TdZ = Tdp + Tds;
Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ);
Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY);
Tdz = Tdv - Tdy;
TdE = TdC - TdD;
TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz);
TdR = FMA(KP382683432, TdE, KP923879532 * Tdz);
}
}
{
E Tdj, TdG, TdT, TdU;
Tdj = Tdb + Tdi;
TdG = Tdu + TdF;
ro[WS(os, 44)] = Tdj - TdG;
ro[WS(os, 12)] = Tdj + TdG;
TdT = TdJ + TdM;
TdU = TdQ + TdR;
io[WS(os, 44)] = TdT - TdU;
io[WS(os, 12)] = TdT + TdU;
}
{
E TdN, TdO, TdP, TdS;
TdN = TdJ - TdM;
TdO = TdF - Tdu;
io[WS(os, 60)] = TdN - TdO;
io[WS(os, 28)] = TdN + TdO;
TdP = Tdb - Tdi;
TdS = TdQ - TdR;
ro[WS(os, 60)] = TdP - TdS;
ro[WS(os, 28)] = TdP + TdS;
}
{
E TdX, Te4, Ted, Tee;
TdX = TdV + TdW;
Te4 = Te0 + Te3;
ro[WS(os, 36)] = TdX - Te4;
ro[WS(os, 4)] = TdX + Te4;
Ted = Te5 + Te6;
Tee = Tea + Teb;
io[WS(os, 36)] = Ted - Tee;
io[WS(os, 4)] = Ted + Tee;
}
{
E Te7, Te8, Te9, Tec;
Te7 = Te5 - Te6;
Te8 = Te3 - Te0;
io[WS(os, 52)] = Te7 - Te8;
io[WS(os, 20)] = Te7 + Te8;
Te9 = TdV - TdW;
Tec = Tea - Teb;
ro[WS(os, 52)] = Te9 - Tec;
ro[WS(os, 20)] = Te9 + Tec;
}
}
{
E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz;
E TcL, Tcc, TcC;
Tcc = KP707106781 * (TbD + TbC);
Tcd = Tcb - Tcc;
TcP = Tcb + Tcc;
TcC = KP707106781 * (Tak + Tan);
TcD = TcB - TcC;
TcZ = TcB + TcC;
{
E Tcg, Tcj, TcV, TcW;
Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce);
Tcj = FMA(KP923879532, Tch, KP382683432 * Tci);
Tck = Tcg - Tcj;
Td0 = Tcg + Tcj;
TcV = Tct + Tcu;
TcW = Tcw + Tcx;
TcX = FNMS(KP195090322, TcW, KP980785280 * TcV);
Td5 = FMA(KP195090322, TcV, KP980785280 * TcW);
}
{
E Tco, Tcr, TcE, TcF;
Tco = Tcm - Tcn;
Tcr = Tcp - Tcq;
Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr);
TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr);
TcE = FNMS(KP382683432, Tch, KP923879532 * Tci);
TcF = FMA(KP382683432, Tce, KP923879532 * Tcf);
TcG = TcE - TcF;
TcQ = TcF + TcE;
}
{
E TcS, TcT, Tcv, Tcy;
TcS = Tcm + Tcn;
TcT = Tcp + Tcq;
TcU = FMA(KP980785280, TcS, KP195090322 * TcT);
Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT);
Tcv = Tct - Tcu;
Tcy = Tcw - Tcx;
Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv);
TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy);
}
{
E Tcl, TcA, TcN, TcO;
Tcl = Tcd + Tck;
TcA = Tcs + Tcz;
ro[WS(os, 42)] = Tcl - TcA;
ro[WS(os, 10)] = Tcl + TcA;
TcN = TcD + TcG;
TcO = TcK + TcL;
io[WS(os, 42)] = TcN - TcO;
io[WS(os, 10)] = TcN + TcO;
}
{
E TcH, TcI, TcJ, TcM;
TcH = TcD - TcG;
TcI = Tcz - Tcs;
io[WS(os, 58)] = TcH - TcI;
io[WS(os, 26)] = TcH + TcI;
TcJ = Tcd - Tck;
TcM = TcK - TcL;
ro[WS(os, 58)] = TcJ - TcM;
ro[WS(os, 26)] = TcJ + TcM;
}
{
E TcR, TcY, Td7, Td8;
TcR = TcP + TcQ;
TcY = TcU + TcX;
ro[WS(os, 34)] = TcR - TcY;
ro[WS(os, 2)] = TcR + TcY;
Td7 = TcZ + Td0;
Td8 = Td4 + Td5;
io[WS(os, 34)] = Td7 - Td8;
io[WS(os, 2)] = Td7 + Td8;
}
{
E Td1, Td2, Td3, Td6;
Td1 = TcZ - Td0;
Td2 = TcX - TcU;
io[WS(os, 50)] = Td1 - Td2;
io[WS(os, 18)] = Td1 + Td2;
Td3 = TcP - TcQ;
Td6 = Td4 - Td5;
ro[WS(os, 50)] = Td3 - Td6;
ro[WS(os, 18)] = Td3 + Td6;
}
}
{
E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx;
E TbN, Tao, TbE;
Tao = KP707106781 * (Tak - Tan);
Tap = Tah - Tao;
TbR = Tah + Tao;
TbE = KP707106781 * (TbC - TbD);
TbF = TbB - TbE;
Tc1 = TbB + TbE;
{
E Taw, TaD, TbX, TbY;
Taw = FNMS(KP923879532, Tav, KP382683432 * Tas);
TaD = FMA(KP382683432, Taz, KP923879532 * TaC);
TaE = Taw - TaD;
Tc2 = Taw + TaD;
TbX = Tbb + Tbm;
TbY = Tbs + Tbv;
TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX);
Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX);
}
{
E TaW, Tb5, TbG, TbH;
TaW = TaK - TaV;
Tb5 = Tb1 - Tb4;
Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5);
TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW);
TbG = FNMS(KP923879532, Taz, KP382683432 * TaC);
TbH = FMA(KP923879532, Tas, KP382683432 * Tav);
TbI = TbG - TbH;
TbS = TbH + TbG;
}
{
E TbU, TbV, Tbn, Tbw;
TbU = TaK + TaV;
TbV = Tb1 + Tb4;
TbW = FMA(KP555570233, TbU, KP831469612 * TbV);
Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU);
Tbn = Tbb - Tbm;
Tbw = Tbs - Tbv;
Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn);
TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn);
}
{
E TaF, Tby, TbP, TbQ;
TaF = Tap + TaE;
Tby = Tb6 + Tbx;
ro[WS(os, 46)] = TaF - Tby;
ro[WS(os, 14)] = TaF + Tby;
TbP = TbF + TbI;
TbQ = TbM + TbN;
io[WS(os, 46)] = TbP - TbQ;
io[WS(os, 14)] = TbP + TbQ;
}
{
E TbJ, TbK, TbL, TbO;
TbJ = TbF - TbI;
TbK = Tbx - Tb6;
io[WS(os, 62)] = TbJ - TbK;
io[WS(os, 30)] = TbJ + TbK;
TbL = Tap - TaE;
TbO = TbM - TbN;
ro[WS(os, 62)] = TbL - TbO;
ro[WS(os, 30)] = TbL + TbO;
}
{
E TbT, Tc0, Tc9, Tca;
TbT = TbR + TbS;
Tc0 = TbW + TbZ;
ro[WS(os, 38)] = TbT - Tc0;
ro[WS(os, 6)] = TbT + Tc0;
Tc9 = Tc1 + Tc2;
Tca = Tc6 + Tc7;
io[WS(os, 38)] = Tc9 - Tca;
io[WS(os, 6)] = Tc9 + Tca;
}
{
E Tc3, Tc4, Tc5, Tc8;
Tc3 = Tc1 - Tc2;
Tc4 = TbZ - TbW;
io[WS(os, 54)] = Tc3 - Tc4;
io[WS(os, 22)] = Tc3 + Tc4;
Tc5 = TbR - TbS;
Tc8 = Tc6 - Tc7;
ro[WS(os, 54)] = Tc5 - Tc8;
ro[WS(os, 22)] = Tc5 + Tc8;
}
}
{
E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71;
E T7d;
{
E T6D, T6E, T7k, T7l;
T6D = T37 + T3e;
T6E = T65 + T64;
T6F = T6D - T6E;
T7h = T6D + T6E;
T7k = T6O + T6P;
T7l = T6R + T6S;
T7m = FMA(KP956940335, T7k, KP290284677 * T7l);
T7w = FNMS(KP290284677, T7k, KP956940335 * T7l);
}
{
E T7n, T7o, T6I, T6L;
T7n = T6V + T6W;
T7o = T6Y + T6Z;
T7p = FNMS(KP290284677, T7o, KP956940335 * T7n);
T7x = FMA(KP290284677, T7n, KP956940335 * T7o);
T6I = FNMS(KP555570233, T6H, KP831469612 * T6G);
T6L = FMA(KP831469612, T6J, KP555570233 * T6K);
T6M = T6I - T6L;
T7s = T6I + T6L;
}
{
E T6Q, T6T, T73, T74;
T6Q = T6O - T6P;
T6T = T6R - T6S;
T6U = FMA(KP471396736, T6Q, KP881921264 * T6T);
T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T);
T73 = T5Z + T62;
T74 = T3m + T3t;
T75 = T73 - T74;
T7r = T73 + T74;
}
{
E T76, T77, T6X, T70;
T76 = FNMS(KP555570233, T6J, KP831469612 * T6K);
T77 = FMA(KP555570233, T6G, KP831469612 * T6H);
T78 = T76 - T77;
T7i = T77 + T76;
T6X = T6V - T6W;
T70 = T6Y - T6Z;
T71 = FNMS(KP881921264, T70, KP471396736 * T6X);
T7d = FMA(KP881921264, T6X, KP471396736 * T70);
}
{
E T6N, T72, T7f, T7g;
T6N = T6F + T6M;
T72 = T6U + T71;
ro[WS(os, 43)] = T6N - T72;
ro[WS(os, 11)] = T6N + T72;
T7f = T75 + T78;
T7g = T7c + T7d;
io[WS(os, 43)] = T7f - T7g;
io[WS(os, 11)] = T7f + T7g;
}
{
E T79, T7a, T7b, T7e;
T79 = T75 - T78;
T7a = T71 - T6U;
io[WS(os, 59)] = T79 - T7a;
io[WS(os, 27)] = T79 + T7a;
T7b = T6F - T6M;
T7e = T7c - T7d;
ro[WS(os, 59)] = T7b - T7e;
ro[WS(os, 27)] = T7b + T7e;
}
{
E T7j, T7q, T7z, T7A;
T7j = T7h + T7i;
T7q = T7m + T7p;
ro[WS(os, 35)] = T7j - T7q;
ro[WS(os, 3)] = T7j + T7q;
T7z = T7r + T7s;
T7A = T7w + T7x;
io[WS(os, 35)] = T7z - T7A;
io[WS(os, 3)] = T7z + T7A;
}
{
E T7t, T7u, T7v, T7y;
T7t = T7r - T7s;
T7u = T7p - T7m;
io[WS(os, 51)] = T7t - T7u;
io[WS(os, 19)] = T7t + T7u;
T7v = T7h - T7i;
T7y = T7w - T7x;
ro[WS(os, 51)] = T7v - T7y;
ro[WS(os, 19)] = T7v + T7y;
}
}
{
E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F;
E T9R;
{
E T9h, T9i, T9Y, T9Z;
T9h = T7B + T7C;
T9i = T8J + T8I;
T9j = T9h - T9i;
T9V = T9h + T9i;
T9Y = T9s + T9t;
T9Z = T9v + T9w;
Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z);
Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z);
}
{
E Ta1, Ta2, T9m, T9p;
Ta1 = T9z + T9A;
Ta2 = T9C + T9D;
Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1);
Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2);
T9m = FNMS(KP195090322, T9l, KP980785280 * T9k);
T9p = FMA(KP195090322, T9n, KP980785280 * T9o);
T9q = T9m - T9p;
Ta6 = T9m + T9p;
}
{
E T9u, T9x, T9H, T9I;
T9u = T9s - T9t;
T9x = T9v - T9w;
T9y = FMA(KP634393284, T9u, KP773010453 * T9x);
T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x);
T9H = T8F + T8G;
T9I = T7G + T7J;
T9J = T9H - T9I;
Ta5 = T9H + T9I;
}
{
E T9K, T9L, T9B, T9E;
T9K = FNMS(KP195090322, T9o, KP980785280 * T9n);
T9L = FMA(KP980785280, T9l, KP195090322 * T9k);
T9M = T9K - T9L;
T9W = T9L + T9K;
T9B = T9z - T9A;
T9E = T9C - T9D;
T9F = FNMS(KP773010453, T9E, KP634393284 * T9B);
T9R = FMA(KP773010453, T9B, KP634393284 * T9E);
}
{
E T9r, T9G, T9T, T9U;
T9r = T9j + T9q;
T9G = T9y + T9F;
ro[WS(os, 41)] = T9r - T9G;
ro[WS(os, 9)] = T9r + T9G;
T9T = T9J + T9M;
T9U = T9Q + T9R;
io[WS(os, 41)] = T9T - T9U;
io[WS(os, 9)] = T9T + T9U;
}
{
E T9N, T9O, T9P, T9S;
T9N = T9J - T9M;
T9O = T9F - T9y;
io[WS(os, 57)] = T9N - T9O;
io[WS(os, 25)] = T9N + T9O;
T9P = T9j - T9q;
T9S = T9Q - T9R;
ro[WS(os, 57)] = T9P - T9S;
ro[WS(os, 25)] = T9P + T9S;
}
{
E T9X, Ta4, Tad, Tae;
T9X = T9V + T9W;
Ta4 = Ta0 + Ta3;
ro[WS(os, 33)] = T9X - Ta4;
ro[WS(os, 1)] = T9X + Ta4;
Tad = Ta5 + Ta6;
Tae = Taa + Tab;
io[WS(os, 33)] = Tad - Tae;
io[WS(os, 1)] = Tad + Tae;
}
{
E Ta7, Ta8, Ta9, Tac;
Ta7 = Ta5 - Ta6;
Ta8 = Ta3 - Ta0;
io[WS(os, 49)] = Ta7 - Ta8;
io[WS(os, 17)] = Ta7 + Ta8;
Ta9 = T9V - T9W;
Tac = Taa - Tab;
ro[WS(os, 49)] = Ta9 - Tac;
ro[WS(os, 17)] = Ta9 + Tac;
}
}
{
E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V;
E T6f;
{
E T3f, T3u, T6m, T6n;
T3f = T37 - T3e;
T3u = T3m - T3t;
T3v = T3f - T3u;
T6j = T3f + T3u;
T6m = T4q + T4N;
T6n = T4X + T50;
T6o = FMA(KP634393284, T6m, KP773010453 * T6n);
T6y = FNMS(KP634393284, T6n, KP773010453 * T6m);
}
{
E T6p, T6q, T3O, T47;
T6p = T5j + T5G;
T6q = T5Q + T5T;
T6r = FNMS(KP634393284, T6q, KP773010453 * T6p);
T6z = FMA(KP773010453, T6q, KP634393284 * T6p);
T3O = FNMS(KP980785280, T3N, KP195090322 * T3G);
T47 = FMA(KP195090322, T3Z, KP980785280 * T46);
T48 = T3O - T47;
T6u = T3O + T47;
}
{
E T4O, T51, T63, T66;
T4O = T4q - T4N;
T51 = T4X - T50;
T52 = FMA(KP995184726, T4O, KP098017140 * T51);
T6e = FNMS(KP995184726, T51, KP098017140 * T4O);
T63 = T5Z - T62;
T66 = T64 - T65;
T67 = T63 - T66;
T6t = T63 + T66;
}
{
E T68, T69, T5H, T5U;
T68 = FNMS(KP980785280, T3Z, KP195090322 * T46);
T69 = FMA(KP980785280, T3G, KP195090322 * T3N);
T6a = T68 - T69;
T6k = T69 + T68;
T5H = T5j - T5G;
T5U = T5Q - T5T;
T5V = FNMS(KP995184726, T5U, KP098017140 * T5H);
T6f = FMA(KP098017140, T5U, KP995184726 * T5H);
}
{
E T49, T5W, T6h, T6i;
T49 = T3v + T48;
T5W = T52 + T5V;
ro[WS(os, 47)] = T49 - T5W;
ro[WS(os, 15)] = T49 + T5W;
T6h = T67 + T6a;
T6i = T6e + T6f;
io[WS(os, 47)] = T6h - T6i;
io[WS(os, 15)] = T6h + T6i;
}
{
E T6b, T6c, T6d, T6g;
T6b = T67 - T6a;
T6c = T5V - T52;
io[WS(os, 63)] = T6b - T6c;
io[WS(os, 31)] = T6b + T6c;
T6d = T3v - T48;
T6g = T6e - T6f;
ro[WS(os, 63)] = T6d - T6g;
ro[WS(os, 31)] = T6d + T6g;
}
{
E T6l, T6s, T6B, T6C;
T6l = T6j + T6k;
T6s = T6o + T6r;
ro[WS(os, 39)] = T6l - T6s;
ro[WS(os, 7)] = T6l + T6s;
T6B = T6t + T6u;
T6C = T6y + T6z;
io[WS(os, 39)] = T6B - T6C;
io[WS(os, 7)] = T6B + T6C;
}
{
E T6v, T6w, T6x, T6A;
T6v = T6t - T6u;
T6w = T6r - T6o;
io[WS(os, 55)] = T6v - T6w;
io[WS(os, 23)] = T6v + T6w;
T6x = T6j - T6k;
T6A = T6y - T6z;
ro[WS(os, 55)] = T6x - T6A;
ro[WS(os, 23)] = T6x + T6A;
}
}
{
E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D;
E T8T;
{
E T7D, T7K, T90, T91;
T7D = T7B - T7C;
T7K = T7G - T7J;
T7L = T7D - T7K;
T8X = T7D + T7K;
T90 = T84 + T8b;
T91 = T8f + T8i;
T92 = FMA(KP471396736, T90, KP881921264 * T91);
T9c = FNMS(KP471396736, T91, KP881921264 * T90);
}
{
E T93, T94, T7S, T7Z;
T93 = T8n + T8u;
T94 = T8y + T8B;
T95 = FNMS(KP471396736, T94, KP881921264 * T93);
T9d = FMA(KP881921264, T94, KP471396736 * T93);
T7S = FNMS(KP831469612, T7R, KP555570233 * T7O);
T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y);
T80 = T7S - T7Z;
T98 = T7S + T7Z;
}
{
E T8c, T8j, T8H, T8K;
T8c = T84 - T8b;
T8j = T8f - T8i;
T8k = FMA(KP956940335, T8c, KP290284677 * T8j);
T8S = FNMS(KP956940335, T8j, KP290284677 * T8c);
T8H = T8F - T8G;
T8K = T8I - T8J;
T8L = T8H - T8K;
T97 = T8H + T8K;
}
{
E T8M, T8N, T8v, T8C;
T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V);
T8N = FMA(KP555570233, T7R, KP831469612 * T7O);
T8O = T8M - T8N;
T8Y = T8N + T8M;
T8v = T8n - T8u;
T8C = T8y - T8B;
T8D = FNMS(KP956940335, T8C, KP290284677 * T8v);
T8T = FMA(KP290284677, T8C, KP956940335 * T8v);
}
{
E T81, T8E, T8V, T8W;
T81 = T7L + T80;
T8E = T8k + T8D;
ro[WS(os, 45)] = T81 - T8E;
ro[WS(os, 13)] = T81 + T8E;
T8V = T8L + T8O;
T8W = T8S + T8T;
io[WS(os, 45)] = T8V - T8W;
io[WS(os, 13)] = T8V + T8W;
}
{
E T8P, T8Q, T8R, T8U;
T8P = T8L - T8O;
T8Q = T8D - T8k;
io[WS(os, 61)] = T8P - T8Q;
io[WS(os, 29)] = T8P + T8Q;
T8R = T7L - T80;
T8U = T8S - T8T;
ro[WS(os, 61)] = T8R - T8U;
ro[WS(os, 29)] = T8R + T8U;
}
{
E T8Z, T96, T9f, T9g;
T8Z = T8X + T8Y;
T96 = T92 + T95;
ro[WS(os, 37)] = T8Z - T96;
ro[WS(os, 5)] = T8Z + T96;
T9f = T97 + T98;
T9g = T9c + T9d;
io[WS(os, 37)] = T9f - T9g;
io[WS(os, 5)] = T9f + T9g;
}
{
E T99, T9a, T9b, T9e;
T99 = T97 - T98;
T9a = T95 - T92;
io[WS(os, 53)] = T99 - T9a;
io[WS(os, 21)] = T99 + T9a;
T9b = T8X - T8Y;
T9e = T9c - T9d;
ro[WS(os, 53)] = T9b - T9e;
ro[WS(os, 21)] = T9b + T9e;
}
}
}
}
}
static const kdft_desc desc = { 64, "n1_64", { 808, 144, 104, 0 }, &GENUS, 0, 0, 0, 0 };
void X(codelet_n1_64) (planner *p) { X(kdft_register) (p, n1_64, &desc);
}
#endif