mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-09 14:25:06 +00:00
421 lines
11 KiB
C
421 lines
11 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 96 FP additions, 24 FP multiplications,
|
||
|
* (or, 72 additions, 0 multiplications, 24 fused multiply/add),
|
||
|
* 43 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) {
|
||
|
E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1d, TG;
|
||
|
E TJ, T1u, T1c, Tl, T1i, TL, TO, T1v, T1h;
|
||
|
{
|
||
|
E T1, T2, T3, T4;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 4)];
|
||
|
T3 = ri[WS(is, 8)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = T1 + T4;
|
||
|
TR = FNMS(KP500000000, T4, T1);
|
||
|
TA = T3 - T2;
|
||
|
}
|
||
|
{
|
||
|
E To, Tp, Tq, Tr;
|
||
|
To = ii[0];
|
||
|
Tp = ii[WS(is, 4)];
|
||
|
Tq = ii[WS(is, 8)];
|
||
|
Tr = Tp + Tq;
|
||
|
Ts = To + Tr;
|
||
|
TS = Tp - Tq;
|
||
|
Tz = FNMS(KP500000000, Tr, To);
|
||
|
}
|
||
|
{
|
||
|
E T6, T7, T8, T9;
|
||
|
T6 = ri[WS(is, 6)];
|
||
|
T7 = ri[WS(is, 10)];
|
||
|
T8 = ri[WS(is, 2)];
|
||
|
T9 = T7 + T8;
|
||
|
Ta = T6 + T9;
|
||
|
TU = FNMS(KP500000000, T9, T6);
|
||
|
TD = T8 - T7;
|
||
|
}
|
||
|
{
|
||
|
E Tt, Tu, Tv, Tw;
|
||
|
Tt = ii[WS(is, 6)];
|
||
|
Tu = ii[WS(is, 10)];
|
||
|
Tv = ii[WS(is, 2)];
|
||
|
Tw = Tu + Tv;
|
||
|
Tx = Tt + Tw;
|
||
|
TV = Tu - Tv;
|
||
|
TC = FNMS(KP500000000, Tw, Tt);
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Te, Tf;
|
||
|
Tc = ri[WS(is, 3)];
|
||
|
Td = ri[WS(is, 7)];
|
||
|
Te = ri[WS(is, 11)];
|
||
|
Tf = Td + Te;
|
||
|
Tg = Tc + Tf;
|
||
|
T1d = Te - Td;
|
||
|
TG = FNMS(KP500000000, Tf, Tc);
|
||
|
}
|
||
|
{
|
||
|
E T1a, TH, TI, T1b;
|
||
|
T1a = ii[WS(is, 3)];
|
||
|
TH = ii[WS(is, 7)];
|
||
|
TI = ii[WS(is, 11)];
|
||
|
T1b = TH + TI;
|
||
|
TJ = TH - TI;
|
||
|
T1u = T1a + T1b;
|
||
|
T1c = FNMS(KP500000000, T1b, T1a);
|
||
|
}
|
||
|
{
|
||
|
E Th, Ti, Tj, Tk;
|
||
|
Th = ri[WS(is, 9)];
|
||
|
Ti = ri[WS(is, 1)];
|
||
|
Tj = ri[WS(is, 5)];
|
||
|
Tk = Ti + Tj;
|
||
|
Tl = Th + Tk;
|
||
|
T1i = Tj - Ti;
|
||
|
TL = FNMS(KP500000000, Tk, Th);
|
||
|
}
|
||
|
{
|
||
|
E T1f, TM, TN, T1g;
|
||
|
T1f = ii[WS(is, 9)];
|
||
|
TM = ii[WS(is, 1)];
|
||
|
TN = ii[WS(is, 5)];
|
||
|
T1g = TM + TN;
|
||
|
TO = TM - TN;
|
||
|
T1v = T1f + T1g;
|
||
|
T1h = FNMS(KP500000000, T1g, T1f);
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tm, T1t, T1w;
|
||
|
Tb = T5 + Ta;
|
||
|
Tm = Tg + Tl;
|
||
|
ro[WS(os, 6)] = Tb - Tm;
|
||
|
ro[0] = Tb + Tm;
|
||
|
{
|
||
|
E T1x, T1y, Tn, Ty;
|
||
|
T1x = Ts + Tx;
|
||
|
T1y = T1u + T1v;
|
||
|
io[WS(os, 6)] = T1x - T1y;
|
||
|
io[0] = T1x + T1y;
|
||
|
Tn = Tg - Tl;
|
||
|
Ty = Ts - Tx;
|
||
|
io[WS(os, 3)] = Tn + Ty;
|
||
|
io[WS(os, 9)] = Ty - Tn;
|
||
|
}
|
||
|
T1t = T5 - Ta;
|
||
|
T1w = T1u - T1v;
|
||
|
ro[WS(os, 3)] = T1t - T1w;
|
||
|
ro[WS(os, 9)] = T1t + T1w;
|
||
|
{
|
||
|
E T11, T1l, T1k, T1m, T14, T18, T17, T19;
|
||
|
{
|
||
|
E TZ, T10, T1e, T1j;
|
||
|
TZ = FMA(KP866025403, TA, Tz);
|
||
|
T10 = FMA(KP866025403, TD, TC);
|
||
|
T11 = TZ - T10;
|
||
|
T1l = TZ + T10;
|
||
|
T1e = FMA(KP866025403, T1d, T1c);
|
||
|
T1j = FMA(KP866025403, T1i, T1h);
|
||
|
T1k = T1e - T1j;
|
||
|
T1m = T1e + T1j;
|
||
|
}
|
||
|
{
|
||
|
E T12, T13, T15, T16;
|
||
|
T12 = FMA(KP866025403, TJ, TG);
|
||
|
T13 = FMA(KP866025403, TO, TL);
|
||
|
T14 = T12 - T13;
|
||
|
T18 = T12 + T13;
|
||
|
T15 = FMA(KP866025403, TS, TR);
|
||
|
T16 = FMA(KP866025403, TV, TU);
|
||
|
T17 = T15 + T16;
|
||
|
T19 = T15 - T16;
|
||
|
}
|
||
|
io[WS(os, 1)] = T11 - T14;
|
||
|
ro[WS(os, 1)] = T19 + T1k;
|
||
|
io[WS(os, 7)] = T11 + T14;
|
||
|
ro[WS(os, 7)] = T19 - T1k;
|
||
|
ro[WS(os, 10)] = T17 - T18;
|
||
|
io[WS(os, 10)] = T1l - T1m;
|
||
|
ro[WS(os, 4)] = T17 + T18;
|
||
|
io[WS(os, 4)] = T1l + T1m;
|
||
|
}
|
||
|
{
|
||
|
E TF, T1r, T1q, T1s, TQ, TY, TX, T1n;
|
||
|
{
|
||
|
E TB, TE, T1o, T1p;
|
||
|
TB = FNMS(KP866025403, TA, Tz);
|
||
|
TE = FNMS(KP866025403, TD, TC);
|
||
|
TF = TB - TE;
|
||
|
T1r = TB + TE;
|
||
|
T1o = FNMS(KP866025403, T1d, T1c);
|
||
|
T1p = FNMS(KP866025403, T1i, T1h);
|
||
|
T1q = T1o - T1p;
|
||
|
T1s = T1o + T1p;
|
||
|
}
|
||
|
{
|
||
|
E TK, TP, TT, TW;
|
||
|
TK = FNMS(KP866025403, TJ, TG);
|
||
|
TP = FNMS(KP866025403, TO, TL);
|
||
|
TQ = TK - TP;
|
||
|
TY = TK + TP;
|
||
|
TT = FNMS(KP866025403, TS, TR);
|
||
|
TW = FNMS(KP866025403, TV, TU);
|
||
|
TX = TT + TW;
|
||
|
T1n = TT - TW;
|
||
|
}
|
||
|
io[WS(os, 5)] = TF - TQ;
|
||
|
ro[WS(os, 5)] = T1n + T1q;
|
||
|
io[WS(os, 11)] = TF + TQ;
|
||
|
ro[WS(os, 11)] = T1n - T1q;
|
||
|
ro[WS(os, 2)] = TX - TY;
|
||
|
io[WS(os, 2)] = T1r - T1s;
|
||
|
ro[WS(os, 8)] = TX + TY;
|
||
|
io[WS(os, 8)] = T1r + T1s;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 12, "n1_12", { 72, 0, 24, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 12 -name n1_12 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 96 FP additions, 16 FP multiplications,
|
||
|
* (or, 88 additions, 8 multiplications, 8 fused multiply/add),
|
||
|
* 43 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_12(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(48, is), MAKE_VOLATILE_STRIDE(48, os)) {
|
||
|
E T5, TR, TA, Ts, TS, Tz, Ta, TU, TD, Tx, TV, TC, Tg, T1a, TG;
|
||
|
E TJ, T1u, T1d, Tl, T1f, TL, TO, T1v, T1i;
|
||
|
{
|
||
|
E T1, T2, T3, T4;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 4)];
|
||
|
T3 = ri[WS(is, 8)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = T1 + T4;
|
||
|
TR = FNMS(KP500000000, T4, T1);
|
||
|
TA = KP866025403 * (T3 - T2);
|
||
|
}
|
||
|
{
|
||
|
E To, Tp, Tq, Tr;
|
||
|
To = ii[0];
|
||
|
Tp = ii[WS(is, 4)];
|
||
|
Tq = ii[WS(is, 8)];
|
||
|
Tr = Tp + Tq;
|
||
|
Ts = To + Tr;
|
||
|
TS = KP866025403 * (Tp - Tq);
|
||
|
Tz = FNMS(KP500000000, Tr, To);
|
||
|
}
|
||
|
{
|
||
|
E T6, T7, T8, T9;
|
||
|
T6 = ri[WS(is, 6)];
|
||
|
T7 = ri[WS(is, 10)];
|
||
|
T8 = ri[WS(is, 2)];
|
||
|
T9 = T7 + T8;
|
||
|
Ta = T6 + T9;
|
||
|
TU = FNMS(KP500000000, T9, T6);
|
||
|
TD = KP866025403 * (T8 - T7);
|
||
|
}
|
||
|
{
|
||
|
E Tt, Tu, Tv, Tw;
|
||
|
Tt = ii[WS(is, 6)];
|
||
|
Tu = ii[WS(is, 10)];
|
||
|
Tv = ii[WS(is, 2)];
|
||
|
Tw = Tu + Tv;
|
||
|
Tx = Tt + Tw;
|
||
|
TV = KP866025403 * (Tu - Tv);
|
||
|
TC = FNMS(KP500000000, Tw, Tt);
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Te, Tf;
|
||
|
Tc = ri[WS(is, 3)];
|
||
|
Td = ri[WS(is, 7)];
|
||
|
Te = ri[WS(is, 11)];
|
||
|
Tf = Td + Te;
|
||
|
Tg = Tc + Tf;
|
||
|
T1a = KP866025403 * (Te - Td);
|
||
|
TG = FNMS(KP500000000, Tf, Tc);
|
||
|
}
|
||
|
{
|
||
|
E T1b, TH, TI, T1c;
|
||
|
T1b = ii[WS(is, 3)];
|
||
|
TH = ii[WS(is, 7)];
|
||
|
TI = ii[WS(is, 11)];
|
||
|
T1c = TH + TI;
|
||
|
TJ = KP866025403 * (TH - TI);
|
||
|
T1u = T1b + T1c;
|
||
|
T1d = FNMS(KP500000000, T1c, T1b);
|
||
|
}
|
||
|
{
|
||
|
E Th, Ti, Tj, Tk;
|
||
|
Th = ri[WS(is, 9)];
|
||
|
Ti = ri[WS(is, 1)];
|
||
|
Tj = ri[WS(is, 5)];
|
||
|
Tk = Ti + Tj;
|
||
|
Tl = Th + Tk;
|
||
|
T1f = KP866025403 * (Tj - Ti);
|
||
|
TL = FNMS(KP500000000, Tk, Th);
|
||
|
}
|
||
|
{
|
||
|
E T1g, TM, TN, T1h;
|
||
|
T1g = ii[WS(is, 9)];
|
||
|
TM = ii[WS(is, 1)];
|
||
|
TN = ii[WS(is, 5)];
|
||
|
T1h = TM + TN;
|
||
|
TO = KP866025403 * (TM - TN);
|
||
|
T1v = T1g + T1h;
|
||
|
T1i = FNMS(KP500000000, T1h, T1g);
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tm, T1t, T1w;
|
||
|
Tb = T5 + Ta;
|
||
|
Tm = Tg + Tl;
|
||
|
ro[WS(os, 6)] = Tb - Tm;
|
||
|
ro[0] = Tb + Tm;
|
||
|
{
|
||
|
E T1x, T1y, Tn, Ty;
|
||
|
T1x = Ts + Tx;
|
||
|
T1y = T1u + T1v;
|
||
|
io[WS(os, 6)] = T1x - T1y;
|
||
|
io[0] = T1x + T1y;
|
||
|
Tn = Tg - Tl;
|
||
|
Ty = Ts - Tx;
|
||
|
io[WS(os, 3)] = Tn + Ty;
|
||
|
io[WS(os, 9)] = Ty - Tn;
|
||
|
}
|
||
|
T1t = T5 - Ta;
|
||
|
T1w = T1u - T1v;
|
||
|
ro[WS(os, 3)] = T1t - T1w;
|
||
|
ro[WS(os, 9)] = T1t + T1w;
|
||
|
{
|
||
|
E T11, T1l, T1k, T1m, T14, T18, T17, T19;
|
||
|
{
|
||
|
E TZ, T10, T1e, T1j;
|
||
|
TZ = TA + Tz;
|
||
|
T10 = TD + TC;
|
||
|
T11 = TZ - T10;
|
||
|
T1l = TZ + T10;
|
||
|
T1e = T1a + T1d;
|
||
|
T1j = T1f + T1i;
|
||
|
T1k = T1e - T1j;
|
||
|
T1m = T1e + T1j;
|
||
|
}
|
||
|
{
|
||
|
E T12, T13, T15, T16;
|
||
|
T12 = TG + TJ;
|
||
|
T13 = TL + TO;
|
||
|
T14 = T12 - T13;
|
||
|
T18 = T12 + T13;
|
||
|
T15 = TR + TS;
|
||
|
T16 = TU + TV;
|
||
|
T17 = T15 + T16;
|
||
|
T19 = T15 - T16;
|
||
|
}
|
||
|
io[WS(os, 1)] = T11 - T14;
|
||
|
ro[WS(os, 1)] = T19 + T1k;
|
||
|
io[WS(os, 7)] = T11 + T14;
|
||
|
ro[WS(os, 7)] = T19 - T1k;
|
||
|
ro[WS(os, 10)] = T17 - T18;
|
||
|
io[WS(os, 10)] = T1l - T1m;
|
||
|
ro[WS(os, 4)] = T17 + T18;
|
||
|
io[WS(os, 4)] = T1l + T1m;
|
||
|
}
|
||
|
{
|
||
|
E TF, T1r, T1q, T1s, TQ, TY, TX, T1n;
|
||
|
{
|
||
|
E TB, TE, T1o, T1p;
|
||
|
TB = Tz - TA;
|
||
|
TE = TC - TD;
|
||
|
TF = TB - TE;
|
||
|
T1r = TB + TE;
|
||
|
T1o = T1d - T1a;
|
||
|
T1p = T1i - T1f;
|
||
|
T1q = T1o - T1p;
|
||
|
T1s = T1o + T1p;
|
||
|
}
|
||
|
{
|
||
|
E TK, TP, TT, TW;
|
||
|
TK = TG - TJ;
|
||
|
TP = TL - TO;
|
||
|
TQ = TK - TP;
|
||
|
TY = TK + TP;
|
||
|
TT = TR - TS;
|
||
|
TW = TU - TV;
|
||
|
TX = TT + TW;
|
||
|
T1n = TT - TW;
|
||
|
}
|
||
|
io[WS(os, 5)] = TF - TQ;
|
||
|
ro[WS(os, 5)] = T1n + T1q;
|
||
|
io[WS(os, 11)] = TF + TQ;
|
||
|
ro[WS(os, 11)] = T1n - T1q;
|
||
|
ro[WS(os, 2)] = TX - TY;
|
||
|
io[WS(os, 2)] = T1r - T1s;
|
||
|
ro[WS(os, 8)] = TX + TY;
|
||
|
io[WS(os, 8)] = T1r + T1s;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 12, "n1_12", { 88, 8, 8, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_12) (planner *p) { X(kdft_register) (p, n1_12, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|