furnace/extern/fftw/libbench2/verify-r2r.c

965 lines
23 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Lots of ugly duplication from verify-lib.c, plus lots of ugliness in
general for all of the r2r variants...oh well, for now */
#include "verify.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
typedef struct {
bench_problem *p;
bench_tensor *probsz;
bench_tensor *totalsz;
bench_tensor *pckdsz;
bench_tensor *pckdvecsz;
} info;
/*
* Utility functions:
*/
static double dabs(double x) { return (x < 0.0) ? -x : x; }
static double dmin(double x, double y) { return (x < y) ? x : y; }
static double raerror(R *a, R *b, int n)
{
if (n > 0) {
/* compute the relative Linf error */
double e = 0.0, mag = 0.0;
int i;
for (i = 0; i < n; ++i) {
e = dmax(e, dabs(a[i] - b[i]));
mag = dmax(mag, dmin(dabs(a[i]), dabs(b[i])));
}
if (dabs(mag) < 1e-14 && dabs(e) < 1e-14)
e = 0.0;
else
e /= mag;
#ifdef HAVE_ISNAN
BENCH_ASSERT(!isnan(e));
#endif
return e;
} else
return 0.0;
}
#define by2pi(m, n) ((K2PI * (m)) / (n))
/*
* Improve accuracy by reducing x to range [0..1/8]
* before multiplication by 2 * PI.
*/
static trigreal bench_sincos(trigreal m, trigreal n, int sinp)
{
/* waiting for C to get tail recursion... */
trigreal half_n = n * 0.5;
trigreal quarter_n = half_n * 0.5;
trigreal eighth_n = quarter_n * 0.5;
trigreal sgn = 1.0;
if (sinp) goto sin;
cos:
if (m < 0) { m = -m; /* goto cos; */ }
if (m > half_n) { m = n - m; goto cos; }
if (m > eighth_n) { m = quarter_n - m; goto sin; }
return sgn * COS(by2pi(m, n));
msin:
sgn = -sgn;
sin:
if (m < 0) { m = -m; goto msin; }
if (m > half_n) { m = n - m; goto msin; }
if (m > eighth_n) { m = quarter_n - m; goto cos; }
return sgn * SIN(by2pi(m, n));
}
static trigreal cos2pi(int m, int n)
{
return bench_sincos((trigreal)m, (trigreal)n, 0);
}
static trigreal sin2pi(int m, int n)
{
return bench_sincos((trigreal)m, (trigreal)n, 1);
}
static trigreal cos00(int i, int j, int n)
{
return cos2pi(i * j, n);
}
static trigreal cos01(int i, int j, int n)
{
return cos00(i, 2*j + 1, 2*n);
}
static trigreal cos10(int i, int j, int n)
{
return cos00(2*i + 1, j, 2*n);
}
static trigreal cos11(int i, int j, int n)
{
return cos00(2*i + 1, 2*j + 1, 4*n);
}
static trigreal sin00(int i, int j, int n)
{
return sin2pi(i * j, n);
}
static trigreal sin01(int i, int j, int n)
{
return sin00(i, 2*j + 1, 2*n);
}
static trigreal sin10(int i, int j, int n)
{
return sin00(2*i + 1, j, 2*n);
}
static trigreal sin11(int i, int j, int n)
{
return sin00(2*i + 1, 2*j + 1, 4*n);
}
static trigreal realhalf(int i, int j, int n)
{
UNUSED(i);
if (j <= n - j)
return 1.0;
else
return 0.0;
}
static trigreal coshalf(int i, int j, int n)
{
if (j <= n - j)
return cos00(i, j, n);
else
return cos00(i, n - j, n);
}
static trigreal unity(int i, int j, int n)
{
UNUSED(i);
UNUSED(j);
UNUSED(n);
return 1.0;
}
typedef trigreal (*trigfun)(int, int, int);
static void rarand(R *a, int n)
{
int i;
/* generate random inputs */
for (i = 0; i < n; ++i) {
a[i] = mydrand();
}
}
/* C = A + B */
static void raadd(R *c, R *a, R *b, int n)
{
int i;
for (i = 0; i < n; ++i) {
c[i] = a[i] + b[i];
}
}
/* C = A - B */
static void rasub(R *c, R *a, R *b, int n)
{
int i;
for (i = 0; i < n; ++i) {
c[i] = a[i] - b[i];
}
}
/* B = rotate left A + rotate right A */
static void rarolr(R *b, R *a, int n, int nb, int na,
r2r_kind_t k)
{
int isL0 = 0, isL1 = 0, isR0 = 0, isR1 = 0;
int i, ib, ia;
for (ib = 0; ib < nb; ++ib) {
for (i = 0; i < n - 1; ++i)
for (ia = 0; ia < na; ++ia)
b[(ib * n + i) * na + ia] =
a[(ib * n + i + 1) * na + ia];
/* ugly switch to do boundary conditions for various r2r types */
switch (k) {
/* periodic boundaries */
case R2R_DHT:
case R2R_R2HC:
for (ia = 0; ia < na; ++ia) {
b[(ib * n + n - 1) * na + ia] =
a[(ib * n + 0) * na + ia];
b[(ib * n + 0) * na + ia] +=
a[(ib * n + n - 1) * na + ia];
}
break;
case R2R_HC2R: /* ugh (hermitian halfcomplex boundaries) */
if (n > 2) {
if (n % 2 == 0)
for (ia = 0; ia < na; ++ia) {
b[(ib * n + n - 1) * na + ia] = 0.0;
b[(ib * n + 0) * na + ia] +=
a[(ib * n + 1) * na + ia];
b[(ib * n + n/2) * na + ia] +=
+ a[(ib * n + n/2 - 1) * na + ia]
- a[(ib * n + n/2 + 1) * na + ia];
b[(ib * n + n/2 + 1) * na + ia] +=
- a[(ib * n + n/2) * na + ia];
}
else
for (ia = 0; ia < na; ++ia) {
b[(ib * n + n - 1) * na + ia] = 0.0;
b[(ib * n + 0) * na + ia] +=
a[(ib * n + 1) * na + ia];
b[(ib * n + n/2) * na + ia] +=
+ a[(ib * n + n/2) * na + ia]
- a[(ib * n + n/2 + 1) * na + ia];
b[(ib * n + n/2 + 1) * na + ia] +=
- a[(ib * n + n/2 + 1) * na + ia]
- a[(ib * n + n/2) * na + ia];
}
} else /* n <= 2 */ {
for (ia = 0; ia < na; ++ia) {
b[(ib * n + n - 1) * na + ia] =
a[(ib * n + 0) * na + ia];
b[(ib * n + 0) * na + ia] +=
a[(ib * n + n - 1) * na + ia];
}
}
break;
/* various even/odd boundary conditions */
case R2R_REDFT00:
isL1 = isR1 = 1;
goto mirrors;
case R2R_REDFT01:
isL1 = 1;
goto mirrors;
case R2R_REDFT10:
isL0 = isR0 = 1;
goto mirrors;
case R2R_REDFT11:
isL0 = 1;
isR0 = -1;
goto mirrors;
case R2R_RODFT00:
goto mirrors;
case R2R_RODFT01:
isR1 = 1;
goto mirrors;
case R2R_RODFT10:
isL0 = isR0 = -1;
goto mirrors;
case R2R_RODFT11:
isL0 = -1;
isR0 = 1;
goto mirrors;
mirrors:
for (ia = 0; ia < na; ++ia)
b[(ib * n + n - 1) * na + ia] =
isR0 * a[(ib * n + n - 1) * na + ia]
+ (n > 1 ? isR1 * a[(ib * n + n - 2) * na + ia]
: 0);
for (ia = 0; ia < na; ++ia)
b[(ib * n) * na + ia] +=
isL0 * a[(ib * n) * na + ia]
+ (n > 1 ? isL1 * a[(ib * n + 1) * na + ia] : 0);
}
for (i = 1; i < n; ++i)
for (ia = 0; ia < na; ++ia)
b[(ib * n + i) * na + ia] +=
a[(ib * n + i - 1) * na + ia];
}
}
static void raphase_shift(R *b, R *a, int n, int nb, int na,
int n0, int k0, trigfun t)
{
int j, jb, ja;
for (jb = 0; jb < nb; ++jb)
for (j = 0; j < n; ++j) {
trigreal c = 2.0 * t(1, j + k0, n0);
for (ja = 0; ja < na; ++ja) {
int k = (jb * n + j) * na + ja;
b[k] = a[k] * c;
}
}
}
/* A = alpha * A (real, in place) */
static void rascale(R *a, R alpha, int n)
{
int i;
for (i = 0; i < n; ++i) {
a[i] *= alpha;
}
}
/*
* compute rdft:
*/
/* copy real A into real B, using output stride of A and input stride of B */
typedef struct {
dotens2_closure k;
R *ra;
R *rb;
} cpyr_closure;
static void cpyr0(dotens2_closure *k_,
int indxa, int ondxa, int indxb, int ondxb)
{
cpyr_closure *k = (cpyr_closure *)k_;
k->rb[indxb] = k->ra[ondxa];
UNUSED(indxa); UNUSED(ondxb);
}
static void cpyr(R *ra, bench_tensor *sza, R *rb, bench_tensor *szb)
{
cpyr_closure k;
k.k.apply = cpyr0;
k.ra = ra; k.rb = rb;
bench_dotens2(sza, szb, &k.k);
}
static void dofft(info *nfo, R *in, R *out)
{
cpyr(in, nfo->pckdsz, (R *) nfo->p->in, nfo->totalsz);
after_problem_rcopy_from(nfo->p, (bench_real *)nfo->p->in);
doit(1, nfo->p);
after_problem_rcopy_to(nfo->p, (bench_real *)nfo->p->out);
cpyr((R *) nfo->p->out, nfo->totalsz, out, nfo->pckdsz);
}
static double racmp(R *a, R *b, int n, const char *test, double tol)
{
double d = raerror(a, b, n);
if (d > tol) {
ovtpvt_err("Found relative error %e (%s)\n", d, test);
{
int i, N;
N = n > 300 && verbose <= 2 ? 300 : n;
for (i = 0; i < N; ++i)
ovtpvt_err("%8d %16.12f %16.12f\n", i,
(double) a[i],
(double) b[i]);
}
bench_exit(EXIT_FAILURE);
}
return d;
}
/***********************************************************************/
typedef struct {
int n; /* physical size */
int n0; /* "logical" transform size */
int i0, k0; /* shifts of input/output */
trigfun ti, ts; /* impulse/shift trig functions */
} dim_stuff;
static void impulse_response(int rnk, dim_stuff *d, R impulse_amp,
R *A, int N)
{
if (rnk == 0)
A[0] = impulse_amp;
else {
int i;
N /= d->n;
for (i = 0; i < d->n; ++i) {
impulse_response(rnk - 1, d + 1,
impulse_amp * d->ti(d->i0, d->k0 + i, d->n0),
A + i * N, N);
}
}
}
/***************************************************************************/
/*
* Implementation of the FFT tester described in
*
* Funda Erg<EFBFBD>n. Testing multivariate linear functions: Overcoming the
* generator bottleneck. In Proceedings of the Twenty-Seventh Annual
* ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
* Nevada, 29 May--1 June 1995.
*
* Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
* the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
*/
static double rlinear(int n, info *nfo, R *inA, R *inB, R *inC, R *outA,
R *outB, R *outC, R *tmp, int rounds, double tol)
{
double e = 0.0;
int j;
for (j = 0; j < rounds; ++j) {
R alpha, beta;
alpha = mydrand();
beta = mydrand();
rarand(inA, n);
rarand(inB, n);
dofft(nfo, inA, outA);
dofft(nfo, inB, outB);
rascale(outA, alpha, n);
rascale(outB, beta, n);
raadd(tmp, outA, outB, n);
rascale(inA, alpha, n);
rascale(inB, beta, n);
raadd(inC, inA, inB, n);
dofft(nfo, inC, outC);
e = dmax(e, racmp(outC, tmp, n, "linear", tol));
}
return e;
}
static double rimpulse(dim_stuff *d, R impulse_amp,
int n, int vecn, info *nfo,
R *inA, R *inB, R *inC,
R *outA, R *outB, R *outC,
R *tmp, int rounds, double tol)
{
double e = 0.0;
int N = n * vecn;
int i;
int j;
/* test 2: check that the unit impulse is transformed properly */
for (i = 0; i < N; ++i) {
/* pls */
inA[i] = 0.0;
}
for (i = 0; i < vecn; ++i) {
inA[i * n] = (i+1) / (double)(vecn+1);
/* transform of the pls */
impulse_response(nfo->probsz->rnk, d, impulse_amp * inA[i * n],
outA + i * n, n);
}
dofft(nfo, inA, tmp);
e = dmax(e, racmp(tmp, outA, N, "impulse 1", tol));
for (j = 0; j < rounds; ++j) {
rarand(inB, N);
rasub(inC, inA, inB, N);
dofft(nfo, inB, outB);
dofft(nfo, inC, outC);
raadd(tmp, outB, outC, N);
e = dmax(e, racmp(tmp, outA, N, "impulse", tol));
}
return e;
}
static double t_shift(int n, int vecn, info *nfo,
R *inA, R *inB, R *outA, R *outB, R *tmp,
int rounds, double tol,
dim_stuff *d)
{
double e = 0.0;
int nb, na, dim, N = n * vecn;
int i, j;
bench_tensor *sz = nfo->probsz;
/* test 3: check the time-shift property */
/* the paper performs more tests, but this code should be fine too */
nb = 1;
na = n;
/* check shifts across all SZ dimensions */
for (dim = 0; dim < sz->rnk; ++dim) {
int ncur = sz->dims[dim].n;
na /= ncur;
for (j = 0; j < rounds; ++j) {
rarand(inA, N);
for (i = 0; i < vecn; ++i) {
rarolr(inB + i * n, inA + i*n, ncur, nb,na,
nfo->p->k[dim]);
}
dofft(nfo, inA, outA);
dofft(nfo, inB, outB);
for (i = 0; i < vecn; ++i)
raphase_shift(tmp + i * n, outA + i * n, ncur,
nb, na, d[dim].n0, d[dim].k0, d[dim].ts);
e = dmax(e, racmp(tmp, outB, N, "time shift", tol));
}
nb *= ncur;
}
return e;
}
/***********************************************************************/
void verify_r2r(bench_problem *p, int rounds, double tol, errors *e)
{
R *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
info nfo;
int n, vecn, N;
double impulse_amp = 1.0;
dim_stuff *d;
int i;
if (rounds == 0)
rounds = 20; /* default value */
n = tensor_sz(p->sz);
vecn = tensor_sz(p->vecsz);
N = n * vecn;
d = (dim_stuff *) bench_malloc(sizeof(dim_stuff) * p->sz->rnk);
for (i = 0; i < p->sz->rnk; ++i) {
int n0, i0, k0;
trigfun ti, ts;
d[i].n = n0 = p->sz->dims[i].n;
if (p->k[i] > R2R_DHT)
n0 = 2 * (n0 + (p->k[i] == R2R_REDFT00 ? -1 :
(p->k[i] == R2R_RODFT00 ? 1 : 0)));
switch (p->k[i]) {
case R2R_R2HC:
i0 = k0 = 0;
ti = realhalf;
ts = coshalf;
break;
case R2R_DHT:
i0 = k0 = 0;
ti = unity;
ts = cos00;
break;
case R2R_HC2R:
i0 = k0 = 0;
ti = unity;
ts = cos00;
break;
case R2R_REDFT00:
i0 = k0 = 0;
ti = ts = cos00;
break;
case R2R_REDFT01:
i0 = k0 = 0;
ti = ts = cos01;
break;
case R2R_REDFT10:
i0 = k0 = 0;
ti = cos10; impulse_amp *= 2.0;
ts = cos00;
break;
case R2R_REDFT11:
i0 = k0 = 0;
ti = cos11; impulse_amp *= 2.0;
ts = cos01;
break;
case R2R_RODFT00:
i0 = k0 = 1;
ti = sin00; impulse_amp *= 2.0;
ts = cos00;
break;
case R2R_RODFT01:
i0 = 1; k0 = 0;
ti = sin01; impulse_amp *= n == 1 ? 1.0 : 2.0;
ts = cos01;
break;
case R2R_RODFT10:
i0 = 0; k0 = 1;
ti = sin10; impulse_amp *= 2.0;
ts = cos00;
break;
case R2R_RODFT11:
i0 = k0 = 0;
ti = sin11; impulse_amp *= 2.0;
ts = cos01;
break;
default:
BENCH_ASSERT(0);
return;
}
d[i].n0 = n0;
d[i].i0 = i0;
d[i].k0 = k0;
d[i].ti = ti;
d[i].ts = ts;
}
inA = (R *) bench_malloc(N * sizeof(R));
inB = (R *) bench_malloc(N * sizeof(R));
inC = (R *) bench_malloc(N * sizeof(R));
outA = (R *) bench_malloc(N * sizeof(R));
outB = (R *) bench_malloc(N * sizeof(R));
outC = (R *) bench_malloc(N * sizeof(R));
tmp = (R *) bench_malloc(N * sizeof(R));
nfo.p = p;
nfo.probsz = p->sz;
nfo.totalsz = tensor_append(p->vecsz, nfo.probsz);
nfo.pckdsz = verify_pack(nfo.totalsz, 1);
nfo.pckdvecsz = verify_pack(p->vecsz, tensor_sz(nfo.probsz));
e->i = rimpulse(d, impulse_amp, n, vecn, &nfo,
inA, inB, inC, outA, outB, outC, tmp, rounds, tol);
e->l = rlinear(N, &nfo, inA, inB, inC, outA, outB, outC, tmp, rounds,tol);
e->s = t_shift(n, vecn, &nfo, inA, inB, outA, outB, tmp,
rounds, tol, d);
/* grr, verify-lib.c:preserves_input() only works for complex */
if (!p->in_place && !p->destroy_input) {
bench_tensor *totalsz_swap, *pckdsz_swap;
totalsz_swap = tensor_copy_swapio(nfo.totalsz);
pckdsz_swap = tensor_copy_swapio(nfo.pckdsz);
for (i = 0; i < rounds; ++i) {
rarand(inA, N);
dofft(&nfo, inA, outB);
cpyr((R *) nfo.p->in, totalsz_swap, inB, pckdsz_swap);
racmp(inB, inA, N, "preserves_input", 0.0);
}
tensor_destroy(totalsz_swap);
tensor_destroy(pckdsz_swap);
}
tensor_destroy(nfo.totalsz);
tensor_destroy(nfo.pckdsz);
tensor_destroy(nfo.pckdvecsz);
bench_free(tmp);
bench_free(outC);
bench_free(outB);
bench_free(outA);
bench_free(inC);
bench_free(inB);
bench_free(inA);
bench_free(d);
}
typedef struct {
dofft_closure k;
bench_problem *p;
int n0;
} dofft_r2r_closure;
static void cpyr1(int n, R *in, int is, R *out, int os, R scale)
{
int i;
for (i = 0; i < n; ++i)
out[i * os] = in[i * is] * scale;
}
static void mke00(C *a, int n, int c)
{
int i;
for (i = 1; i + i < n; ++i)
a[n - i][c] = a[i][c];
}
static void mkre00(C *a, int n)
{
mkreal(a, n);
mke00(a, n, 0);
}
static void mkimag(C *a, int n)
{
int i;
for (i = 0; i < n; ++i)
c_re(a[i]) = 0.0;
}
static void mko00(C *a, int n, int c)
{
int i;
a[0][c] = 0.0;
for (i = 1; i + i < n; ++i)
a[n - i][c] = -a[i][c];
if (i + i == n)
a[i][c] = 0.0;
}
static void mkro00(C *a, int n)
{
mkreal(a, n);
mko00(a, n, 0);
}
static void mkio00(C *a, int n)
{
mkimag(a, n);
mko00(a, n, 1);
}
static void mkre01(C *a, int n) /* n should be be multiple of 4 */
{
R a0;
a0 = c_re(a[0]);
mko00(a, n/2, 0);
c_re(a[n/2]) = -(c_re(a[0]) = a0);
mkre00(a, n);
}
static void mkro01(C *a, int n) /* n should be be multiple of 4 */
{
c_re(a[0]) = c_im(a[0]) = 0.0;
mkre00(a, n/2);
mkro00(a, n);
}
static void mkoddonly(C *a, int n)
{
int i;
for (i = 0; i < n; i += 2)
c_re(a[i]) = c_im(a[i]) = 0.0;
}
static void mkre10(C *a, int n)
{
mkoddonly(a, n);
mkre00(a, n);
}
static void mkio10(C *a, int n)
{
mkoddonly(a, n);
mkio00(a, n);
}
static void mkre11(C *a, int n)
{
mkoddonly(a, n);
mko00(a, n/2, 0);
mkre00(a, n);
}
static void mkro11(C *a, int n)
{
mkoddonly(a, n);
mkre00(a, n/2);
mkro00(a, n);
}
static void mkio11(C *a, int n)
{
mkoddonly(a, n);
mke00(a, n/2, 1);
mkio00(a, n);
}
static void r2r_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
{
dofft_r2r_closure *k = (dofft_r2r_closure *)k_;
bench_problem *p = k->p;
bench_real *ri, *ro;
int n, is, os;
n = p->sz->dims[0].n;
is = p->sz->dims[0].is;
os = p->sz->dims[0].os;
ri = (bench_real *) p->in;
ro = (bench_real *) p->out;
switch (p->k[0]) {
case R2R_R2HC:
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
break;
case R2R_HC2R:
cpyr1(n/2 + 1, &c_re(in[0]), 2, ri, is, 1.0);
cpyr1((n+1)/2 - 1, &c_im(in[n-1]), -2, ri + is*(n-1), -is, 1.0);
break;
case R2R_REDFT00:
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
break;
case R2R_RODFT00:
cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
break;
case R2R_REDFT01:
cpyr1(n, &c_re(in[0]), 2, ri, is, 1.0);
break;
case R2R_REDFT10:
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
break;
case R2R_RODFT01:
cpyr1(n, &c_re(in[1]), 2, ri, is, 1.0);
break;
case R2R_RODFT10:
cpyr1(n, &c_im(in[1]), 4, ri, is, 1.0);
break;
case R2R_REDFT11:
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
break;
case R2R_RODFT11:
cpyr1(n, &c_re(in[1]), 4, ri, is, 1.0);
break;
default:
BENCH_ASSERT(0); /* not yet implemented */
}
after_problem_rcopy_from(p, ri);
doit(1, p);
after_problem_rcopy_to(p, ro);
switch (p->k[0]) {
case R2R_R2HC:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cpyr1(n/2 + 1, ro, os, &c_re(out[0]), 2, 1.0);
cpyr1((n+1)/2 - 1, ro + os*(n-1), -os, &c_im(out[1]), 2, 1.0);
c_im(out[0]) = 0.0;
if (n % 2 == 0)
c_im(out[n/2]) = 0.0;
mkhermitian1(out, n);
break;
case R2R_HC2R:
if (k->k.recopy_input) {
cpyr1(n/2 + 1, ri, is, &c_re(in[0]), 2, 1.0);
cpyr1((n+1)/2 - 1, ri + is*(n-1), -is, &c_im(in[1]), 2,1.0);
}
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
mkreal(out, n);
break;
case R2R_REDFT00:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
mkre00(out, k->n0);
break;
case R2R_RODFT00:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_im(in[1]), 2, -1.0);
cpyr1(n, ro, os, &c_im(out[1]), 2, -1.0);
mkio00(out, k->n0);
break;
case R2R_REDFT01:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[0]), 2, 1.0);
cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
mkre10(out, k->n0);
break;
case R2R_REDFT10:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cpyr1(n, ro, os, &c_re(out[0]), 2, 1.0);
mkre01(out, k->n0);
break;
case R2R_RODFT01:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[1]), 2, 1.0);
cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
mkio10(out, k->n0);
break;
case R2R_RODFT10:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cpyr1(n, ro, os, &c_re(out[1]), 2, 1.0);
mkro01(out, k->n0);
break;
case R2R_REDFT11:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_re(in[1]), 4, 2.0);
cpyr1(n, ro, os, &c_re(out[1]), 4, 2.0);
mkre11(out, k->n0);
break;
case R2R_RODFT11:
if (k->k.recopy_input)
cpyr1(n, ri, is, &c_im(in[1]), 4, -2.0);
cpyr1(n, ro, os, &c_im(out[1]), 4, -2.0);
mkio11(out, k->n0);
break;
default:
BENCH_ASSERT(0); /* not yet implemented */
}
}
void accuracy_r2r(bench_problem *p, int rounds, int impulse_rounds,
double t[6])
{
dofft_r2r_closure k;
int n, n0 = 1;
C *a, *b;
aconstrain constrain = 0;
BENCH_ASSERT(p->kind == PROBLEM_R2R);
BENCH_ASSERT(p->sz->rnk == 1);
BENCH_ASSERT(p->vecsz->rnk == 0);
k.k.apply = r2r_apply;
k.k.recopy_input = 0;
k.p = p;
n = tensor_sz(p->sz);
switch (p->k[0]) {
case R2R_R2HC: constrain = mkreal; n0 = n; break;
case R2R_HC2R: constrain = mkhermitian1; n0 = n; break;
case R2R_REDFT00: constrain = mkre00; n0 = 2*(n-1); break;
case R2R_RODFT00: constrain = mkro00; n0 = 2*(n+1); break;
case R2R_REDFT01: constrain = mkre01; n0 = 4*n; break;
case R2R_REDFT10: constrain = mkre10; n0 = 4*n; break;
case R2R_RODFT01: constrain = mkro01; n0 = 4*n; break;
case R2R_RODFT10: constrain = mkio10; n0 = 4*n; break;
case R2R_REDFT11: constrain = mkre11; n0 = 8*n; break;
case R2R_RODFT11: constrain = mkro11; n0 = 8*n; break;
default: BENCH_ASSERT(0); /* not yet implemented */
}
k.n0 = n0;
a = (C *) bench_malloc(n0 * sizeof(C));
b = (C *) bench_malloc(n0 * sizeof(C));
accuracy_test(&k.k, constrain, -1, n0, a, b, rounds, impulse_rounds, t);
bench_free(b);
bench_free(a);
}