furnace/extern/fftw/rdft/simd/common/hc2cbdftv_10.c

296 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
/*
* This function contains 61 FP additions, 50 FP multiplications,
* (or, 33 additions, 22 multiplications, 28 fused multiply/add),
* 76 stack variables, 4 constants, and 20 memory accesses
*/
#include "rdft/simd/hc2cbv.h"
static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
V T4, Ts, Tl, TB, Tj, Tk, Tz, TA, TF, TV, Tp, TL, Te, Tw, Th;
V Tx, Ti, Ty, T7, Tt, Ta, Tu, Tb, Tv, T2, T3, Tc, Td, Tf, Tg;
V T5, T6, T8, T9, TD, TE, Tn, To;
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
T4 = VFNMSCONJ(T3, T2);
Ts = VFMACONJ(T3, T2);
Tc = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Td = LD(&(Rm[0]), -ms, &(Rm[0]));
Te = VFNMSCONJ(Td, Tc);
Tw = VFMACONJ(Td, Tc);
Tf = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Tg = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Th = VFMSCONJ(Tg, Tf);
Tx = VFMACONJ(Tg, Tf);
Ti = VADD(Te, Th);
Ty = VADD(Tw, Tx);
T5 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
T6 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T7 = VFNMSCONJ(T6, T5);
Tt = VFMACONJ(T6, T5);
T8 = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
T9 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Ta = VFMSCONJ(T9, T8);
Tu = VFMACONJ(T9, T8);
Tb = VADD(T7, Ta);
Tv = VADD(Tt, Tu);
Tl = VSUB(Tb, Ti);
TB = VSUB(Tv, Ty);
Tj = VADD(Tb, Ti);
Tk = VFNMS(LDK(KP250000000), Tj, T4);
Tz = VADD(Tv, Ty);
TA = VFNMS(LDK(KP250000000), Tz, Ts);
TD = VSUB(Tw, Tx);
TE = VSUB(Tt, Tu);
TF = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TE, TD));
TV = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TD, TE));
Tn = VSUB(Te, Th);
To = VSUB(T7, Ta);
Tp = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), To, Tn));
TL = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, To));
{
V T17, TS, Tq, T10, TW, T12, TM, T16, TG, TO, TR, Tm, T1, TZ, TU;
V TT, T11, TK, TJ, T15, TC, Tr, TN, TH, TP, T19, TI, T18, T14, TY;
V TQ, T13, TX;
T17 = VADD(Ts, Tz);
TR = LDW(&(W[TWVL * 8]));
TS = VZMULI(TR, VADD(T4, Tj));
Tm = VFNMS(LDK(KP559016994), Tl, Tk);
T1 = LDW(&(W[TWVL * 4]));
Tq = VZMULI(T1, VFMAI(Tp, Tm));
TZ = LDW(&(W[TWVL * 12]));
T10 = VZMULI(TZ, VFNMSI(Tp, Tm));
TU = VFMA(LDK(KP559016994), TB, TA);
TT = LDW(&(W[TWVL * 6]));
TW = VZMUL(TT, VFNMSI(TV, TU));
T11 = LDW(&(W[TWVL * 10]));
T12 = VZMUL(T11, VFMAI(TV, TU));
TK = VFMA(LDK(KP559016994), Tl, Tk);
TJ = LDW(&(W[TWVL * 16]));
TM = VZMULI(TJ, VFNMSI(TL, TK));
T15 = LDW(&(W[0]));
T16 = VZMULI(T15, VFMAI(TL, TK));
TC = VFNMS(LDK(KP559016994), TB, TA);
Tr = LDW(&(W[TWVL * 2]));
TG = VZMUL(Tr, VFNMSI(TF, TC));
TN = LDW(&(W[TWVL * 14]));
TO = VZMUL(TN, VFMAI(TF, TC));
TH = VADD(Tq, TG);
ST(&(Rp[WS(rs, 1)]), TH, ms, &(Rp[WS(rs, 1)]));
TP = VADD(TM, TO);
ST(&(Rp[WS(rs, 4)]), TP, ms, &(Rp[0]));
T19 = VCONJ(VSUB(T17, T16));
ST(&(Rm[0]), T19, -ms, &(Rm[0]));
TI = VCONJ(VSUB(TG, Tq));
ST(&(Rm[WS(rs, 1)]), TI, -ms, &(Rm[WS(rs, 1)]));
T18 = VADD(T16, T17);
ST(&(Rp[0]), T18, ms, &(Rp[0]));
T14 = VCONJ(VSUB(T12, T10));
ST(&(Rm[WS(rs, 3)]), T14, -ms, &(Rm[WS(rs, 1)]));
TY = VCONJ(VSUB(TW, TS));
ST(&(Rm[WS(rs, 2)]), TY, -ms, &(Rm[0]));
TQ = VCONJ(VSUB(TO, TM));
ST(&(Rm[WS(rs, 4)]), TQ, -ms, &(Rm[0]));
T13 = VADD(T10, T12);
ST(&(Rp[WS(rs, 3)]), T13, ms, &(Rp[WS(rs, 1)]));
TX = VADD(TS, TW);
ST(&(Rp[WS(rs, 2)]), TX, ms, &(Rp[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
VTW(1, 8),
VTW(1, 9),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 33, 22, 28, 0 } };
void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 10 -dif -sign 1 -name hc2cbdftv_10 -include rdft/simd/hc2cbv.h */
/*
* This function contains 61 FP additions, 30 FP multiplications,
* (or, 55 additions, 24 multiplications, 6 fused multiply/add),
* 81 stack variables, 4 constants, and 20 memory accesses
*/
#include "rdft/simd/hc2cbv.h"
static void hc2cbdftv_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 18)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(40, rs)) {
V T5, TE, Ts, Tt, TC, Tz, TH, TJ, To, Tq, T2, T4, T3, T9, Tx;
V Tm, TB, Td, Ty, Ti, TA, T6, T8, T7, Tl, Tk, Tj, Tc, Tb, Ta;
V Tf, Th, Tg, TF, TG, Te, Tn;
T2 = LD(&(Rp[0]), ms, &(Rp[0]));
T3 = LD(&(Rm[WS(rs, 4)]), -ms, &(Rm[0]));
T4 = VCONJ(T3);
T5 = VSUB(T2, T4);
TE = VADD(T2, T4);
T6 = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
T7 = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
T8 = VCONJ(T7);
T9 = VSUB(T6, T8);
Tx = VADD(T6, T8);
Tl = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Tj = LD(&(Rm[WS(rs, 3)]), -ms, &(Rm[WS(rs, 1)]));
Tk = VCONJ(Tj);
Tm = VSUB(Tk, Tl);
TB = VADD(Tk, Tl);
Tc = LD(&(Rp[WS(rs, 3)]), ms, &(Rp[WS(rs, 1)]));
Ta = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Tb = VCONJ(Ta);
Td = VSUB(Tb, Tc);
Ty = VADD(Tb, Tc);
Tf = LD(&(Rp[WS(rs, 4)]), ms, &(Rp[0]));
Tg = LD(&(Rm[0]), -ms, &(Rm[0]));
Th = VCONJ(Tg);
Ti = VSUB(Tf, Th);
TA = VADD(Tf, Th);
Ts = VSUB(T9, Td);
Tt = VSUB(Ti, Tm);
TC = VSUB(TA, TB);
Tz = VSUB(Tx, Ty);
TF = VADD(Tx, Ty);
TG = VADD(TA, TB);
TH = VADD(TF, TG);
TJ = VMUL(LDK(KP559016994), VSUB(TF, TG));
Te = VADD(T9, Td);
Tn = VADD(Ti, Tm);
To = VADD(Te, Tn);
Tq = VMUL(LDK(KP559016994), VSUB(Te, Tn));
{
V T1c, TX, Tv, T1b, TR, T15, TL, T17, TT, T11, TW, Tu, TQ, Tr, TP;
V Tp, T1, T1a, TO, T14, TD, T10, TK, TZ, TI, Tw, T16, TS, TY, TM;
V TU, T1e, TN, T1d, T19, T13, TV, T18, T12;
T1c = VADD(TE, TH);
TW = LDW(&(W[TWVL * 8]));
TX = VZMULI(TW, VADD(T5, To));
Tu = VBYI(VFNMS(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Ts)));
TQ = VBYI(VFMA(LDK(KP951056516), Ts, VMUL(LDK(KP587785252), Tt)));
Tp = VFNMS(LDK(KP250000000), To, T5);
Tr = VSUB(Tp, Tq);
TP = VADD(Tq, Tp);
T1 = LDW(&(W[TWVL * 4]));
Tv = VZMULI(T1, VSUB(Tr, Tu));
T1a = LDW(&(W[0]));
T1b = VZMULI(T1a, VADD(TQ, TP));
TO = LDW(&(W[TWVL * 16]));
TR = VZMULI(TO, VSUB(TP, TQ));
T14 = LDW(&(W[TWVL * 12]));
T15 = VZMULI(T14, VADD(Tu, Tr));
TD = VBYI(VFNMS(LDK(KP951056516), TC, VMUL(LDK(KP587785252), Tz)));
T10 = VBYI(VFMA(LDK(KP951056516), Tz, VMUL(LDK(KP587785252), TC)));
TI = VFNMS(LDK(KP250000000), TH, TE);
TK = VSUB(TI, TJ);
TZ = VADD(TJ, TI);
Tw = LDW(&(W[TWVL * 2]));
TL = VZMUL(Tw, VADD(TD, TK));
T16 = LDW(&(W[TWVL * 10]));
T17 = VZMUL(T16, VADD(T10, TZ));
TS = LDW(&(W[TWVL * 14]));
TT = VZMUL(TS, VSUB(TK, TD));
TY = LDW(&(W[TWVL * 6]));
T11 = VZMUL(TY, VSUB(TZ, T10));
TM = VADD(Tv, TL);
ST(&(Rp[WS(rs, 1)]), TM, ms, &(Rp[WS(rs, 1)]));
TU = VADD(TR, TT);
ST(&(Rp[WS(rs, 4)]), TU, ms, &(Rp[0]));
T1e = VCONJ(VSUB(T1c, T1b));
ST(&(Rm[0]), T1e, -ms, &(Rm[0]));
TN = VCONJ(VSUB(TL, Tv));
ST(&(Rm[WS(rs, 1)]), TN, -ms, &(Rm[WS(rs, 1)]));
T1d = VADD(T1b, T1c);
ST(&(Rp[0]), T1d, ms, &(Rp[0]));
T19 = VCONJ(VSUB(T17, T15));
ST(&(Rm[WS(rs, 3)]), T19, -ms, &(Rm[WS(rs, 1)]));
T13 = VCONJ(VSUB(T11, TX));
ST(&(Rm[WS(rs, 2)]), T13, -ms, &(Rm[0]));
TV = VCONJ(VSUB(TT, TR));
ST(&(Rm[WS(rs, 4)]), TV, -ms, &(Rm[0]));
T18 = VADD(T15, T17);
ST(&(Rp[WS(rs, 3)]), T18, ms, &(Rp[WS(rs, 1)]));
T12 = VADD(TX, T11);
ST(&(Rp[WS(rs, 2)]), T12, ms, &(Rp[0]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(1, 1),
VTW(1, 2),
VTW(1, 3),
VTW(1, 4),
VTW(1, 5),
VTW(1, 6),
VTW(1, 7),
VTW(1, 8),
VTW(1, 9),
{ TW_NEXT, VL, 0 }
};
static const hc2c_desc desc = { 10, XSIMD_STRING("hc2cbdftv_10"), twinstr, &GENUS, { 55, 24, 6, 0 } };
void XSIMD(codelet_hc2cbdftv_10) (planner *p) {
X(khc2c_register) (p, hc2cbdftv_10, &desc, HC2C_VIA_DFT);
}
#endif