mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-05 20:35:06 +00:00
296 lines
8.6 KiB
C
296 lines
8.6 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:48 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 58 FP additions, 32 FP multiplications,
|
||
|
* (or, 26 additions, 0 multiplications, 32 fused multiply/add),
|
||
|
* 31 stack variables, 4 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/r2cb.h"
|
||
|
|
||
|
static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
|
||
|
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
|
||
|
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
|
||
|
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
|
||
|
E T5, TL, Tj, TD, T8, TM, To, TE, Tc, TP, Tf, TQ, Tu, Tz, TR;
|
||
|
E TO, TH, TG;
|
||
|
{
|
||
|
E T4, Ti, T3, Th, T1, T2;
|
||
|
T4 = Cr[WS(csr, 4)];
|
||
|
Ti = Ci[WS(csi, 4)];
|
||
|
T1 = Cr[0];
|
||
|
T2 = Cr[WS(csr, 8)];
|
||
|
T3 = T1 + T2;
|
||
|
Th = T1 - T2;
|
||
|
T5 = FMA(KP2_000000000, T4, T3);
|
||
|
TL = FNMS(KP2_000000000, T4, T3);
|
||
|
Tj = FNMS(KP2_000000000, Ti, Th);
|
||
|
TD = FMA(KP2_000000000, Ti, Th);
|
||
|
}
|
||
|
{
|
||
|
E T6, T7, Tk, Tl, Tm, Tn;
|
||
|
T6 = Cr[WS(csr, 2)];
|
||
|
T7 = Cr[WS(csr, 6)];
|
||
|
Tk = T6 - T7;
|
||
|
Tl = Ci[WS(csi, 2)];
|
||
|
Tm = Ci[WS(csi, 6)];
|
||
|
Tn = Tl + Tm;
|
||
|
T8 = T6 + T7;
|
||
|
TM = Tl - Tm;
|
||
|
To = Tk - Tn;
|
||
|
TE = Tk + Tn;
|
||
|
}
|
||
|
{
|
||
|
E Tq, Ty, Tv, Tt;
|
||
|
{
|
||
|
E Ta, Tb, Tw, Tx;
|
||
|
Ta = Cr[WS(csr, 1)];
|
||
|
Tb = Cr[WS(csr, 7)];
|
||
|
Tc = Ta + Tb;
|
||
|
Tq = Ta - Tb;
|
||
|
Tw = Ci[WS(csi, 1)];
|
||
|
Tx = Ci[WS(csi, 7)];
|
||
|
Ty = Tw + Tx;
|
||
|
TP = Tw - Tx;
|
||
|
}
|
||
|
{
|
||
|
E Td, Te, Tr, Ts;
|
||
|
Td = Cr[WS(csr, 5)];
|
||
|
Te = Cr[WS(csr, 3)];
|
||
|
Tf = Td + Te;
|
||
|
Tv = Td - Te;
|
||
|
Tr = Ci[WS(csi, 5)];
|
||
|
Ts = Ci[WS(csi, 3)];
|
||
|
Tt = Tr + Ts;
|
||
|
TQ = Tr - Ts;
|
||
|
}
|
||
|
Tu = Tq - Tt;
|
||
|
Tz = Tv + Ty;
|
||
|
TR = TP - TQ;
|
||
|
TO = Tc - Tf;
|
||
|
TH = Tq + Tt;
|
||
|
TG = Ty - Tv;
|
||
|
}
|
||
|
{
|
||
|
E T9, Tg, TT, TU;
|
||
|
T9 = FMA(KP2_000000000, T8, T5);
|
||
|
Tg = Tc + Tf;
|
||
|
R0[WS(rs, 4)] = FNMS(KP2_000000000, Tg, T9);
|
||
|
R0[0] = FMA(KP2_000000000, Tg, T9);
|
||
|
TT = FMA(KP2_000000000, TM, TL);
|
||
|
TU = TO + TR;
|
||
|
R0[WS(rs, 3)] = FNMS(KP1_414213562, TU, TT);
|
||
|
R0[WS(rs, 7)] = FMA(KP1_414213562, TU, TT);
|
||
|
}
|
||
|
{
|
||
|
E TV, TW, Tp, TA;
|
||
|
TV = FNMS(KP2_000000000, T8, T5);
|
||
|
TW = TQ + TP;
|
||
|
R0[WS(rs, 2)] = FNMS(KP2_000000000, TW, TV);
|
||
|
R0[WS(rs, 6)] = FMA(KP2_000000000, TW, TV);
|
||
|
Tp = FMA(KP1_414213562, To, Tj);
|
||
|
TA = FNMS(KP414213562, Tz, Tu);
|
||
|
R1[WS(rs, 4)] = FNMS(KP1_847759065, TA, Tp);
|
||
|
R1[0] = FMA(KP1_847759065, TA, Tp);
|
||
|
}
|
||
|
{
|
||
|
E TB, TC, TJ, TK;
|
||
|
TB = FNMS(KP1_414213562, To, Tj);
|
||
|
TC = FMA(KP414213562, Tu, Tz);
|
||
|
R1[WS(rs, 2)] = FNMS(KP1_847759065, TC, TB);
|
||
|
R1[WS(rs, 6)] = FMA(KP1_847759065, TC, TB);
|
||
|
TJ = FMA(KP1_414213562, TE, TD);
|
||
|
TK = FMA(KP414213562, TG, TH);
|
||
|
R1[WS(rs, 3)] = FNMS(KP1_847759065, TK, TJ);
|
||
|
R1[WS(rs, 7)] = FMA(KP1_847759065, TK, TJ);
|
||
|
}
|
||
|
{
|
||
|
E TN, TS, TF, TI;
|
||
|
TN = FNMS(KP2_000000000, TM, TL);
|
||
|
TS = TO - TR;
|
||
|
R0[WS(rs, 5)] = FNMS(KP1_414213562, TS, TN);
|
||
|
R0[WS(rs, 1)] = FMA(KP1_414213562, TS, TN);
|
||
|
TF = FNMS(KP1_414213562, TE, TD);
|
||
|
TI = FNMS(KP414213562, TH, TG);
|
||
|
R1[WS(rs, 1)] = FNMS(KP1_847759065, TI, TF);
|
||
|
R1[WS(rs, 5)] = FMA(KP1_847759065, TI, TF);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kr2c_desc desc = { 16, "r2cb_16", { 26, 0, 32, 0 }, &GENUS };
|
||
|
|
||
|
void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cb_16 -include rdft/scalar/r2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 58 FP additions, 18 FP multiplications,
|
||
|
* (or, 54 additions, 14 multiplications, 4 fused multiply/add),
|
||
|
* 31 stack variables, 4 constants, and 32 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/r2cb.h"
|
||
|
|
||
|
static void r2cb_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
|
||
|
DK(KP765366864, +0.765366864730179543456919968060797733522689125);
|
||
|
DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
|
||
|
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
|
||
|
E T9, TS, Tl, TG, T6, TR, Ti, TD, Td, Tq, Tg, Tt, Tn, Tu, TV;
|
||
|
E TU, TN, TK;
|
||
|
{
|
||
|
E T7, T8, TE, Tj, Tk, TF;
|
||
|
T7 = Cr[WS(csr, 2)];
|
||
|
T8 = Cr[WS(csr, 6)];
|
||
|
TE = T7 - T8;
|
||
|
Tj = Ci[WS(csi, 2)];
|
||
|
Tk = Ci[WS(csi, 6)];
|
||
|
TF = Tj + Tk;
|
||
|
T9 = KP2_000000000 * (T7 + T8);
|
||
|
TS = KP1_414213562 * (TE + TF);
|
||
|
Tl = KP2_000000000 * (Tj - Tk);
|
||
|
TG = KP1_414213562 * (TE - TF);
|
||
|
}
|
||
|
{
|
||
|
E T5, TC, T3, TA;
|
||
|
{
|
||
|
E T4, TB, T1, T2;
|
||
|
T4 = Cr[WS(csr, 4)];
|
||
|
T5 = KP2_000000000 * T4;
|
||
|
TB = Ci[WS(csi, 4)];
|
||
|
TC = KP2_000000000 * TB;
|
||
|
T1 = Cr[0];
|
||
|
T2 = Cr[WS(csr, 8)];
|
||
|
T3 = T1 + T2;
|
||
|
TA = T1 - T2;
|
||
|
}
|
||
|
T6 = T3 + T5;
|
||
|
TR = TA + TC;
|
||
|
Ti = T3 - T5;
|
||
|
TD = TA - TC;
|
||
|
}
|
||
|
{
|
||
|
E TI, TM, TL, TJ;
|
||
|
{
|
||
|
E Tb, Tc, To, Tp;
|
||
|
Tb = Cr[WS(csr, 1)];
|
||
|
Tc = Cr[WS(csr, 7)];
|
||
|
Td = Tb + Tc;
|
||
|
TI = Tb - Tc;
|
||
|
To = Ci[WS(csi, 1)];
|
||
|
Tp = Ci[WS(csi, 7)];
|
||
|
Tq = To - Tp;
|
||
|
TM = To + Tp;
|
||
|
}
|
||
|
{
|
||
|
E Te, Tf, Tr, Ts;
|
||
|
Te = Cr[WS(csr, 5)];
|
||
|
Tf = Cr[WS(csr, 3)];
|
||
|
Tg = Te + Tf;
|
||
|
TL = Te - Tf;
|
||
|
Tr = Ci[WS(csi, 5)];
|
||
|
Ts = Ci[WS(csi, 3)];
|
||
|
Tt = Tr - Ts;
|
||
|
TJ = Tr + Ts;
|
||
|
}
|
||
|
Tn = Td - Tg;
|
||
|
Tu = Tq - Tt;
|
||
|
TV = TM - TL;
|
||
|
TU = TI + TJ;
|
||
|
TN = TL + TM;
|
||
|
TK = TI - TJ;
|
||
|
}
|
||
|
{
|
||
|
E Ta, Th, TT, TW;
|
||
|
Ta = T6 + T9;
|
||
|
Th = KP2_000000000 * (Td + Tg);
|
||
|
R0[WS(rs, 4)] = Ta - Th;
|
||
|
R0[0] = Ta + Th;
|
||
|
TT = TR - TS;
|
||
|
TW = FNMS(KP1_847759065, TV, KP765366864 * TU);
|
||
|
R1[WS(rs, 5)] = TT - TW;
|
||
|
R1[WS(rs, 1)] = TT + TW;
|
||
|
}
|
||
|
{
|
||
|
E TX, TY, Tm, Tv;
|
||
|
TX = TR + TS;
|
||
|
TY = FMA(KP1_847759065, TU, KP765366864 * TV);
|
||
|
R1[WS(rs, 3)] = TX - TY;
|
||
|
R1[WS(rs, 7)] = TX + TY;
|
||
|
Tm = Ti - Tl;
|
||
|
Tv = KP1_414213562 * (Tn - Tu);
|
||
|
R0[WS(rs, 5)] = Tm - Tv;
|
||
|
R0[WS(rs, 1)] = Tm + Tv;
|
||
|
}
|
||
|
{
|
||
|
E Tw, Tx, TH, TO;
|
||
|
Tw = Ti + Tl;
|
||
|
Tx = KP1_414213562 * (Tn + Tu);
|
||
|
R0[WS(rs, 3)] = Tw - Tx;
|
||
|
R0[WS(rs, 7)] = Tw + Tx;
|
||
|
TH = TD + TG;
|
||
|
TO = FNMS(KP765366864, TN, KP1_847759065 * TK);
|
||
|
R1[WS(rs, 4)] = TH - TO;
|
||
|
R1[0] = TH + TO;
|
||
|
}
|
||
|
{
|
||
|
E TP, TQ, Ty, Tz;
|
||
|
TP = TD - TG;
|
||
|
TQ = FMA(KP765366864, TK, KP1_847759065 * TN);
|
||
|
R1[WS(rs, 2)] = TP - TQ;
|
||
|
R1[WS(rs, 6)] = TP + TQ;
|
||
|
Ty = T6 - T9;
|
||
|
Tz = KP2_000000000 * (Tt + Tq);
|
||
|
R0[WS(rs, 2)] = Ty - Tz;
|
||
|
R0[WS(rs, 6)] = Ty + Tz;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kr2c_desc desc = { 16, "r2cb_16", { 54, 14, 4, 0 }, &GENUS };
|
||
|
|
||
|
void X(codelet_r2cb_16) (planner *p) { X(kr2c_register) (p, r2cb_16, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|