furnace/extern/fftw/rdft/scalar/r2cb/hc2cbdft_10.c

546 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:12 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
/*
* This function contains 122 FP additions, 72 FP multiplications,
* (or, 68 additions, 18 multiplications, 54 fused multiply/add),
* 91 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E T3, Tl, Tu, T14, Ti, T13, Ts, Tt, T1p, T23, TZ, T1z, TQ, T1g, TV;
E T1l, TT, TU, T1j, T1k, T1c, T1Y, TK, T1u;
{
E Td, Tp, Tg, Tq, Th, Tr, T6, Tm, T9, Tn, Ta, To, T1, T2;
T1 = Rp[0];
T2 = Rm[WS(rs, 4)];
T3 = T1 + T2;
Tl = T1 - T2;
{
E Tb, Tc, Te, Tf;
Tb = Rp[WS(rs, 4)];
Tc = Rm[0];
Td = Tb + Tc;
Tp = Tb - Tc;
Te = Rm[WS(rs, 3)];
Tf = Rp[WS(rs, 1)];
Tg = Te + Tf;
Tq = Te - Tf;
}
Th = Td + Tg;
Tr = Tp + Tq;
{
E T4, T5, T7, T8;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 2)];
T6 = T4 + T5;
Tm = T4 - T5;
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 3)];
T9 = T7 + T8;
Tn = T7 - T8;
}
Ta = T6 + T9;
To = Tm + Tn;
Tu = To - Tr;
T14 = Ta - Th;
Ti = Ta + Th;
T13 = FNMS(KP250000000, Ti, T3);
Ts = To + Tr;
Tt = FNMS(KP250000000, Ts, Tl);
{
E T1n, T1o, TX, TY;
T1n = Td - Tg;
T1o = T6 - T9;
T1p = FNMS(KP618033988, T1o, T1n);
T23 = FMA(KP618033988, T1n, T1o);
TX = Tm - Tn;
TY = Tp - Tq;
TZ = FMA(KP618033988, TY, TX);
T1z = FNMS(KP618033988, TX, TY);
}
}
{
E TF, T16, TI, T17, TS, T1i, Ty, T19, TB, T1a, TR, T1h, TO, TP;
TO = Ip[0];
TP = Im[WS(rs, 4)];
TQ = TO + TP;
T1g = TO - TP;
{
E TD, TE, TG, TH;
TD = Ip[WS(rs, 4)];
TE = Im[0];
TF = TD + TE;
T16 = TD - TE;
TG = Im[WS(rs, 3)];
TH = Ip[WS(rs, 1)];
TI = TG + TH;
T17 = TH - TG;
}
TS = TF - TI;
T1i = T16 + T17;
{
E Tw, Tx, Tz, TA;
Tw = Ip[WS(rs, 2)];
Tx = Im[WS(rs, 2)];
Ty = Tw + Tx;
T19 = Tw - Tx;
Tz = Im[WS(rs, 1)];
TA = Ip[WS(rs, 3)];
TB = Tz + TA;
T1a = TA - Tz;
}
TR = Ty - TB;
T1h = T19 + T1a;
TV = TR - TS;
T1l = T1h - T1i;
TT = TR + TS;
TU = FNMS(KP250000000, TT, TQ);
T1j = T1h + T1i;
T1k = FNMS(KP250000000, T1j, T1g);
{
E T18, T1b, TC, TJ;
T18 = T16 - T17;
T1b = T19 - T1a;
T1c = FNMS(KP618033988, T1b, T18);
T1Y = FMA(KP618033988, T18, T1b);
TC = Ty + TB;
TJ = TF + TI;
TK = FMA(KP618033988, TJ, TC);
T1u = FNMS(KP618033988, TC, TJ);
}
}
{
E Tj, T2y, T2a, T1A, T2q, T10, T1Q, T24, T2k, T1q, T1K, T26, T28, T29, T2c;
E Tk, TM, TN, T2w, T1M, T1O, T1P, T1S, T1s, T1w, T1x, T1C, T2m, T2o, T2p;
E T2s, T12, T1e, T1f, T1E, T1G, T1I, T1J, T1U, T1W, T20, T21, T2e, T2g, T2i;
E T2j, T2u, T1y, TW, T22, T2l, T2r;
Tj = T3 + Ti;
T2y = T1g + T1j;
T2a = TQ + TT;
T1y = FNMS(KP559016994, TV, TU);
T1A = FMA(KP951056516, T1z, T1y);
T2q = FNMS(KP951056516, T1z, T1y);
TW = FMA(KP559016994, TV, TU);
T10 = FMA(KP951056516, TZ, TW);
T1Q = FNMS(KP951056516, TZ, TW);
T22 = FMA(KP559016994, T1l, T1k);
T24 = FNMS(KP951056516, T23, T22);
T2k = FMA(KP951056516, T23, T22);
{
E T1m, T1v, T2n, T1t;
T1m = FNMS(KP559016994, T1l, T1k);
T1q = FNMS(KP951056516, T1p, T1m);
T1K = FMA(KP951056516, T1p, T1m);
{
E T27, TL, T1N, Tv;
T27 = Tl + Ts;
T26 = W[9];
T28 = T26 * T27;
T29 = W[8];
T2c = T29 * T27;
Tv = FMA(KP559016994, Tu, Tt);
TL = FNMS(KP951056516, TK, Tv);
T1N = FMA(KP951056516, TK, Tv);
Tk = W[1];
TM = Tk * TL;
TN = W[0];
T2w = TN * TL;
T1M = W[17];
T1O = T1M * T1N;
T1P = W[16];
T1S = T1P * T1N;
}
T1t = FNMS(KP559016994, Tu, Tt);
T1v = FNMS(KP951056516, T1u, T1t);
T2n = FMA(KP951056516, T1u, T1t);
T1s = W[5];
T1w = T1s * T1v;
T1x = W[4];
T1C = T1x * T1v;
T2m = W[13];
T2o = T2m * T2n;
T2p = W[12];
T2s = T2p * T2n;
{
E T1d, T1H, T15, T1Z, T2h, T1X;
T15 = FNMS(KP559016994, T14, T13);
T1d = FMA(KP951056516, T1c, T15);
T1H = FNMS(KP951056516, T1c, T15);
T12 = W[2];
T1e = T12 * T1d;
T1f = W[3];
T1E = T1f * T1d;
T1G = W[14];
T1I = T1G * T1H;
T1J = W[15];
T1U = T1J * T1H;
T1X = FMA(KP559016994, T14, T13);
T1Z = FMA(KP951056516, T1Y, T1X);
T2h = FNMS(KP951056516, T1Y, T1X);
T1W = W[6];
T20 = T1W * T1Z;
T21 = W[7];
T2e = T21 * T1Z;
T2g = W[10];
T2i = T2g * T2h;
T2j = W[11];
T2u = T2j * T2h;
}
}
{
E T11, T2x, T1r, T1B;
T11 = FMA(TN, T10, TM);
Rp[0] = Tj - T11;
Rm[0] = Tj + T11;
T2x = FNMS(Tk, T10, T2w);
Im[0] = T2x - T2y;
Ip[0] = T2x + T2y;
T1r = FNMS(T1f, T1q, T1e);
T1B = FMA(T1x, T1A, T1w);
Rp[WS(rs, 1)] = T1r - T1B;
Rm[WS(rs, 1)] = T1B + T1r;
{
E T1D, T1F, T1L, T1R;
T1D = FNMS(T1s, T1A, T1C);
T1F = FMA(T12, T1q, T1E);
Im[WS(rs, 1)] = T1D - T1F;
Ip[WS(rs, 1)] = T1D + T1F;
T1L = FNMS(T1J, T1K, T1I);
T1R = FMA(T1P, T1Q, T1O);
Rp[WS(rs, 4)] = T1L - T1R;
Rm[WS(rs, 4)] = T1R + T1L;
}
}
{
E T1T, T1V, T2t, T2v;
T1T = FNMS(T1M, T1Q, T1S);
T1V = FMA(T1G, T1K, T1U);
Im[WS(rs, 4)] = T1T - T1V;
Ip[WS(rs, 4)] = T1T + T1V;
T2t = FNMS(T2m, T2q, T2s);
T2v = FMA(T2g, T2k, T2u);
Im[WS(rs, 3)] = T2t - T2v;
Ip[WS(rs, 3)] = T2t + T2v;
}
T2l = FNMS(T2j, T2k, T2i);
T2r = FMA(T2p, T2q, T2o);
Rp[WS(rs, 3)] = T2l - T2r;
Rm[WS(rs, 3)] = T2r + T2l;
{
E T25, T2b, T2d, T2f;
T25 = FNMS(T21, T24, T20);
T2b = FMA(T29, T2a, T28);
Rp[WS(rs, 2)] = T25 - T2b;
Rm[WS(rs, 2)] = T2b + T25;
T2d = FNMS(T26, T2a, T2c);
T2f = FMA(T1W, T24, T2e);
Im[WS(rs, 2)] = T2d - T2f;
Ip[WS(rs, 2)] = T2d + T2f;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 68, 18, 54, 0 } };
void X(codelet_hc2cbdft_10) (planner *p) {
X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include rdft/scalar/hc2cb.h */
/*
* This function contains 122 FP additions, 60 FP multiplications,
* (or, 92 additions, 30 multiplications, 30 fused multiply/add),
* 61 stack variables, 4 constants, and 40 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;
E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;
{
E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;
T1 = Rp[0];
T2 = Rm[WS(rs, 4)];
T3 = T1 + T2;
TS = T1 - T2;
{
E Tb, Tc, Te, Tf;
Tb = Rp[WS(rs, 4)];
Tc = Rm[0];
Td = Tb + Tc;
To = Tb - Tc;
Te = Rm[WS(rs, 3)];
Tf = Rp[WS(rs, 1)];
Tg = Te + Tf;
Tp = Te - Tf;
}
Th = Td + Tg;
TQ = To + Tp;
{
E T4, T5, T7, T8;
T4 = Rp[WS(rs, 2)];
T5 = Rm[WS(rs, 2)];
T6 = T4 + T5;
Tl = T4 - T5;
T7 = Rm[WS(rs, 1)];
T8 = Rp[WS(rs, 3)];
T9 = T7 + T8;
Tm = T7 - T8;
}
Ta = T6 + T9;
TP = Tl + Tm;
TR = KP559016994 * (TP - TQ);
T13 = KP559016994 * (Ta - Th);
Ti = Ta + Th;
T12 = FNMS(KP250000000, Ti, T3);
TT = TP + TQ;
TU = FNMS(KP250000000, TT, TS);
{
E T1e, T1f, Tn, Tq;
T1e = T6 - T9;
T1f = Td - Tg;
T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);
T1T = FMA(KP951056516, T1e, KP587785252 * T1f);
Tn = Tl - Tm;
Tq = To - Tp;
Tr = FMA(KP951056516, Tn, KP587785252 * Tq);
T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);
}
}
{
E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;
TH = Ip[0];
TI = Im[WS(rs, 4)];
TJ = TH + TI;
T1h = TH - TI;
{
E Tz, TA, TC, TD;
Tz = Ip[WS(rs, 4)];
TA = Im[0];
TB = Tz + TA;
T18 = Tz - TA;
TC = Im[WS(rs, 3)];
TD = Ip[WS(rs, 1)];
TE = TC + TD;
T19 = TD - TC;
}
TF = TB - TE;
T1j = T18 + T19;
{
E Ts, Tt, Tv, Tw;
Ts = Ip[WS(rs, 2)];
Tt = Im[WS(rs, 2)];
Tu = Ts + Tt;
T15 = Ts - Tt;
Tv = Im[WS(rs, 1)];
Tw = Ip[WS(rs, 3)];
Tx = Tv + Tw;
T16 = Tw - Tv;
}
Ty = Tu - Tx;
T1i = T15 + T16;
TG = KP559016994 * (Ty - TF);
T1m = KP559016994 * (T1i - T1j);
TK = Ty + TF;
TL = FNMS(KP250000000, TK, TJ);
T1k = T1i + T1j;
T1l = FNMS(KP250000000, T1k, T1h);
{
E T17, T1a, TW, TX;
T17 = T15 - T16;
T1a = T18 - T19;
T1b = FNMS(KP951056516, T1a, KP587785252 * T17);
T1P = FMA(KP951056516, T17, KP587785252 * T1a);
TW = Tu + Tx;
TX = TB + TE;
TY = FMA(KP951056516, TW, KP587785252 * TX);
T1w = FNMS(KP951056516, TX, KP587785252 * TW);
}
}
{
E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;
E T1E, T1x, T2b, T20, T21, TM, T1S, TV;
Tj = T3 + Ti;
T2g = T1h + T1k;
TM = TG + TL;
TN = Tr + TM;
T1H = TM - Tr;
T1S = T1m + T1l;
T1U = T1S - T1T;
T26 = T1T + T1S;
TV = TR + TU;
TZ = TV - TY;
T1J = TV + TY;
{
E T1O, T14, T1r, T1n, T1v;
T1O = T13 + T12;
T1Q = T1O + T1P;
T24 = T1O - T1P;
T14 = T12 - T13;
T1c = T14 - T1b;
T1C = T14 + T1b;
T1r = TL - TG;
T1t = T1r - T1s;
T29 = T1s + T1r;
T1n = T1l - T1m;
T1o = T1g + T1n;
T1E = T1n - T1g;
T1v = TU - TR;
T1x = T1v + T1w;
T2b = T1v - T1w;
{
E T1X, T1Z, T1W, T1Y;
T1X = TS + TT;
T1Z = TJ + TK;
T1W = W[9];
T1Y = W[8];
T20 = FMA(T1W, T1X, T1Y * T1Z);
T21 = FNMS(T1W, T1Z, T1Y * T1X);
}
}
{
E T10, T2f, Tk, TO;
Tk = W[0];
TO = W[1];
T10 = FMA(Tk, TN, TO * TZ);
T2f = FNMS(TO, TN, Tk * TZ);
Rp[0] = Tj - T10;
Ip[0] = T2f + T2g;
Rm[0] = Tj + T10;
Im[0] = T2f - T2g;
}
{
E T1V, T22, T1N, T1R;
T1N = W[6];
T1R = W[7];
T1V = FNMS(T1R, T1U, T1N * T1Q);
T22 = FMA(T1R, T1Q, T1N * T1U);
Rp[WS(rs, 2)] = T1V - T20;
Ip[WS(rs, 2)] = T21 + T22;
Rm[WS(rs, 2)] = T20 + T1V;
Im[WS(rs, 2)] = T21 - T22;
}
{
E T1p, T1A, T1y, T1z;
{
E T11, T1d, T1q, T1u;
T11 = W[2];
T1d = W[3];
T1p = FNMS(T1d, T1o, T11 * T1c);
T1A = FMA(T1d, T1c, T11 * T1o);
T1q = W[4];
T1u = W[5];
T1y = FMA(T1q, T1t, T1u * T1x);
T1z = FNMS(T1u, T1t, T1q * T1x);
}
Rp[WS(rs, 1)] = T1p - T1y;
Ip[WS(rs, 1)] = T1z + T1A;
Rm[WS(rs, 1)] = T1y + T1p;
Im[WS(rs, 1)] = T1z - T1A;
}
{
E T1F, T1M, T1K, T1L;
{
E T1B, T1D, T1G, T1I;
T1B = W[14];
T1D = W[15];
T1F = FNMS(T1D, T1E, T1B * T1C);
T1M = FMA(T1D, T1C, T1B * T1E);
T1G = W[16];
T1I = W[17];
T1K = FMA(T1G, T1H, T1I * T1J);
T1L = FNMS(T1I, T1H, T1G * T1J);
}
Rp[WS(rs, 4)] = T1F - T1K;
Ip[WS(rs, 4)] = T1L + T1M;
Rm[WS(rs, 4)] = T1K + T1F;
Im[WS(rs, 4)] = T1L - T1M;
}
{
E T27, T2e, T2c, T2d;
{
E T23, T25, T28, T2a;
T23 = W[10];
T25 = W[11];
T27 = FNMS(T25, T26, T23 * T24);
T2e = FMA(T25, T24, T23 * T26);
T28 = W[12];
T2a = W[13];
T2c = FMA(T28, T29, T2a * T2b);
T2d = FNMS(T2a, T29, T28 * T2b);
}
Rp[WS(rs, 3)] = T27 - T2c;
Ip[WS(rs, 3)] = T2d + T2e;
Rm[WS(rs, 3)] = T2c + T27;
Im[WS(rs, 3)] = T2d - T2e;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 10 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, { 92, 30, 30, 0 } };
void X(codelet_hc2cbdft_10) (planner *p) {
X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);
}
#endif