furnace/extern/fftw/rdft/scalar/r2cb/hb2_16.c

859 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:55 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */
/*
* This function contains 196 FP additions, 134 FP multiplications,
* (or, 104 additions, 42 multiplications, 92 fused multiply/add),
* 93 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
E Tv, Tw, T2z, T2C, TB, TF, Ty, Tz, T1V, TA, T2G, T3Q, T3C, T3g, T3L;
E T30, T3m, T3z, T3w, T3s, T1X, T1Y, T2u, T2c, T2p, TE, TG, T1G, T1o, T1D;
{
E T3f, T3l, T2F, T3r, T2Z, T3v, TD, Tx;
Tv = W[0];
Tw = W[2];
Tx = Tv * Tw;
T2z = W[6];
T3f = Tv * T2z;
T2C = W[7];
T3l = Tv * T2C;
TB = W[4];
T2F = Tv * TB;
T3r = Tw * TB;
TF = W[5];
T2Z = Tv * TF;
T3v = Tw * TF;
Ty = W[1];
Tz = W[3];
TD = Tv * Tz;
T1V = FMA(Ty, Tz, Tx);
TA = FNMS(Ty, Tz, Tx);
T2G = FNMS(Ty, TF, T2F);
T3Q = FMA(Tz, TB, T3v);
T3C = FNMS(Ty, TB, T2Z);
T3g = FMA(Ty, T2C, T3f);
T3L = FNMS(Tz, TF, T3r);
T30 = FMA(Ty, TB, T2Z);
T3m = FNMS(Ty, T2z, T3l);
T3z = FMA(Ty, TF, T2F);
T3w = FNMS(Tz, TB, T3v);
T3s = FMA(Tz, TF, T3r);
{
E T1W, T2b, TC, T1n;
T1W = T1V * TB;
T2b = T1V * TF;
T1X = FNMS(Ty, Tw, TD);
T1Y = FNMS(T1X, TF, T1W);
T2u = FNMS(T1X, TB, T2b);
T2c = FMA(T1X, TB, T2b);
T2p = FMA(T1X, TF, T1W);
TC = TA * TB;
T1n = TA * TF;
TE = FMA(Ty, Tw, TD);
TG = FNMS(TE, TF, TC);
T1G = FNMS(TE, TB, T1n);
T1o = FMA(TE, TB, T1n);
T1D = FMA(TE, TF, TC);
}
}
{
E TL, T1Z, T2d, T1t, T31, T34, T3n, T3D, T3E, T3R, T1w, T20, Tf, T3M, T2L;
E T3h, TW, T2e, T3G, T3H, T3N, T2Q, T36, T2V, T37, Tu, T3S, T18, T1z, T24;
E T2g, T27, T2h, T1j, T1y;
{
E T3, TH, TU, T2I, T1s, T32, T6, T1p, Ta, TM, TK, T33, TP, T2J, Td;
E TR;
{
E T1, T2, TS, TT;
T1 = cr[0];
T2 = ci[WS(rs, 7)];
T3 = T1 + T2;
TH = T1 - T2;
TS = ci[WS(rs, 9)];
TT = cr[WS(rs, 14)];
TU = TS + TT;
T2I = TS - TT;
}
{
E T1q, T1r, T4, T5;
T1q = ci[WS(rs, 15)];
T1r = cr[WS(rs, 8)];
T1s = T1q + T1r;
T32 = T1q - T1r;
T4 = cr[WS(rs, 4)];
T5 = ci[WS(rs, 3)];
T6 = T4 + T5;
T1p = T4 - T5;
}
{
E T8, T9, TI, TJ;
T8 = cr[WS(rs, 2)];
T9 = ci[WS(rs, 5)];
Ta = T8 + T9;
TM = T8 - T9;
TI = ci[WS(rs, 11)];
TJ = cr[WS(rs, 12)];
TK = TI + TJ;
T33 = TI - TJ;
}
{
E TN, TO, Tb, Tc;
TN = ci[WS(rs, 13)];
TO = cr[WS(rs, 10)];
TP = TN + TO;
T2J = TN - TO;
Tb = ci[WS(rs, 1)];
Tc = cr[WS(rs, 6)];
Td = Tb + Tc;
TR = Tb - Tc;
}
TL = TH - TK;
T1Z = TH + TK;
T2d = T1s - T1p;
T1t = T1p + T1s;
T31 = Ta - Td;
T34 = T32 - T33;
T3n = T34 - T31;
{
E T1u, T1v, T7, Te;
T3D = T32 + T33;
T3E = T2J + T2I;
T3R = T3D - T3E;
T1u = TM + TP;
T1v = TR + TU;
T1w = T1u - T1v;
T20 = T1u + T1v;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
T3M = T7 - Te;
{
E T2H, T2K, TQ, TV;
T2H = T3 - T6;
T2K = T2I - T2J;
T2L = T2H + T2K;
T3h = T2H - T2K;
TQ = TM - TP;
TV = TR - TU;
TW = TQ + TV;
T2e = TQ - TV;
}
}
}
{
E Ti, T1e, T1c, T2N, T1h, T2O, Tl, T19, Tp, T13, T11, T2S, T16, T2T, Ts;
E TY, T2M, T2P;
{
E Tg, Th, T1a, T1b;
Tg = cr[WS(rs, 1)];
Th = ci[WS(rs, 6)];
Ti = Tg + Th;
T1e = Tg - Th;
T1a = ci[WS(rs, 14)];
T1b = cr[WS(rs, 9)];
T1c = T1a + T1b;
T2N = T1a - T1b;
}
{
E T1f, T1g, Tj, Tk;
T1f = ci[WS(rs, 10)];
T1g = cr[WS(rs, 13)];
T1h = T1f + T1g;
T2O = T1f - T1g;
Tj = cr[WS(rs, 5)];
Tk = ci[WS(rs, 2)];
Tl = Tj + Tk;
T19 = Tj - Tk;
}
{
E Tn, To, TZ, T10;
Tn = ci[0];
To = cr[WS(rs, 7)];
Tp = Tn + To;
T13 = Tn - To;
TZ = ci[WS(rs, 8)];
T10 = cr[WS(rs, 15)];
T11 = TZ + T10;
T2S = TZ - T10;
}
{
E T14, T15, Tq, Tr;
T14 = ci[WS(rs, 12)];
T15 = cr[WS(rs, 11)];
T16 = T14 + T15;
T2T = T14 - T15;
Tq = cr[WS(rs, 3)];
Tr = ci[WS(rs, 4)];
Ts = Tq + Tr;
TY = Tq - Tr;
}
T3G = T2N + T2O;
T3H = T2S + T2T;
T3N = T3H - T3G;
T2M = Ti - Tl;
T2P = T2N - T2O;
T2Q = T2M - T2P;
T36 = T2M + T2P;
{
E T2R, T2U, Tm, Tt;
T2R = Tp - Ts;
T2U = T2S - T2T;
T2V = T2R + T2U;
T37 = T2U - T2R;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
T3S = Tm - Tt;
}
{
E T12, T17, T22, T23;
T12 = TY - T11;
T17 = T13 - T16;
T18 = FNMS(KP414213562, T17, T12);
T1z = FMA(KP414213562, T12, T17);
T22 = T1c - T19;
T23 = T1e + T1h;
T24 = FNMS(KP414213562, T23, T22);
T2g = FMA(KP414213562, T22, T23);
}
{
E T25, T26, T1d, T1i;
T25 = TY + T11;
T26 = T13 + T16;
T27 = FNMS(KP414213562, T26, T25);
T2h = FMA(KP414213562, T25, T26);
T1d = T19 + T1c;
T1i = T1e - T1h;
T1j = FMA(KP414213562, T1i, T1d);
T1y = FNMS(KP414213562, T1d, T1i);
}
}
cr[0] = Tf + Tu;
{
E T3B, T3K, T3F, T3I, T3J, T3A;
T3A = Tf - Tu;
T3B = T3z * T3A;
T3K = T3C * T3A;
T3F = T3D + T3E;
T3I = T3G + T3H;
T3J = T3F - T3I;
ci[0] = T3F + T3I;
ci[WS(rs, 8)] = FMA(T3z, T3J, T3K);
cr[WS(rs, 8)] = FNMS(T3C, T3J, T3B);
}
{
E T3O, T3P, T3T, T3U;
T3O = T3M - T3N;
T3P = T3L * T3O;
T3T = T3R - T3S;
T3U = T3L * T3T;
cr[WS(rs, 12)] = FNMS(T3Q, T3T, T3P);
ci[WS(rs, 12)] = FMA(T3Q, T3O, T3U);
}
{
E T3V, T3W, T3X, T3Y;
T3V = T3M + T3N;
T3W = TA * T3V;
T3X = T3S + T3R;
T3Y = TA * T3X;
cr[WS(rs, 4)] = FNMS(TE, T3X, T3W);
ci[WS(rs, 4)] = FMA(TE, T3V, T3Y);
}
{
E T3j, T3t, T3p, T3x, T3i, T3o;
T3i = T37 - T36;
T3j = FNMS(KP707106781, T3i, T3h);
T3t = FMA(KP707106781, T3i, T3h);
T3o = T2Q - T2V;
T3p = FNMS(KP707106781, T3o, T3n);
T3x = FMA(KP707106781, T3o, T3n);
{
E T3k, T3q, T3u, T3y;
T3k = T3g * T3j;
cr[WS(rs, 14)] = FNMS(T3m, T3p, T3k);
T3q = T3g * T3p;
ci[WS(rs, 14)] = FMA(T3m, T3j, T3q);
T3u = T3s * T3t;
cr[WS(rs, 6)] = FNMS(T3w, T3x, T3u);
T3y = T3s * T3x;
ci[WS(rs, 6)] = FMA(T3w, T3t, T3y);
}
}
{
E T2X, T3b, T39, T3d, T2W, T35, T38;
T2W = T2Q + T2V;
T2X = FNMS(KP707106781, T2W, T2L);
T3b = FMA(KP707106781, T2W, T2L);
T35 = T31 + T34;
T38 = T36 + T37;
T39 = FNMS(KP707106781, T38, T35);
T3d = FMA(KP707106781, T38, T35);
{
E T2Y, T3a, T3c, T3e;
T2Y = T2G * T2X;
cr[WS(rs, 10)] = FNMS(T30, T39, T2Y);
T3a = T30 * T2X;
ci[WS(rs, 10)] = FMA(T2G, T39, T3a);
T3c = T1V * T3b;
cr[WS(rs, 2)] = FNMS(T1X, T3d, T3c);
T3e = T1X * T3b;
ci[WS(rs, 2)] = FMA(T1V, T3d, T3e);
}
}
{
E T29, T2l, T2j, T2n;
{
E T21, T28, T2f, T2i;
T21 = FNMS(KP707106781, T20, T1Z);
T28 = T24 + T27;
T29 = FMA(KP923879532, T28, T21);
T2l = FNMS(KP923879532, T28, T21);
T2f = FMA(KP707106781, T2e, T2d);
T2i = T2g - T2h;
T2j = FNMS(KP923879532, T2i, T2f);
T2n = FMA(KP923879532, T2i, T2f);
}
{
E T2a, T2k, T2m, T2o;
T2a = T1Y * T29;
cr[WS(rs, 11)] = FNMS(T2c, T2j, T2a);
T2k = T2c * T29;
ci[WS(rs, 11)] = FMA(T1Y, T2j, T2k);
T2m = Tw * T2l;
cr[WS(rs, 3)] = FNMS(Tz, T2n, T2m);
T2o = Tz * T2l;
ci[WS(rs, 3)] = FMA(Tw, T2n, T2o);
}
}
{
E T1l, T1E, T1B, T1H;
{
E TX, T1k, T1x, T1A;
TX = FNMS(KP707106781, TW, TL);
T1k = T18 - T1j;
T1l = FNMS(KP923879532, T1k, TX);
T1E = FMA(KP923879532, T1k, TX);
T1x = FNMS(KP707106781, T1w, T1t);
T1A = T1y - T1z;
T1B = FNMS(KP923879532, T1A, T1x);
T1H = FMA(KP923879532, T1A, T1x);
}
{
E T1m, T1C, T1F, T1I;
T1m = TG * T1l;
cr[WS(rs, 13)] = FNMS(T1o, T1B, T1m);
T1C = T1o * T1l;
ci[WS(rs, 13)] = FMA(TG, T1B, T1C);
T1F = T1D * T1E;
cr[WS(rs, 5)] = FNMS(T1G, T1H, T1F);
T1I = T1G * T1E;
ci[WS(rs, 5)] = FMA(T1D, T1H, T1I);
}
}
{
E T2s, T2A, T2x, T2D;
{
E T2q, T2r, T2v, T2w;
T2q = FMA(KP707106781, T20, T1Z);
T2r = T2g + T2h;
T2s = FNMS(KP923879532, T2r, T2q);
T2A = FMA(KP923879532, T2r, T2q);
T2v = FNMS(KP707106781, T2e, T2d);
T2w = T27 - T24;
T2x = FMA(KP923879532, T2w, T2v);
T2D = FNMS(KP923879532, T2w, T2v);
}
{
E T2t, T2y, T2B, T2E;
T2t = T2p * T2s;
cr[WS(rs, 7)] = FNMS(T2u, T2x, T2t);
T2y = T2p * T2x;
ci[WS(rs, 7)] = FMA(T2u, T2s, T2y);
T2B = T2z * T2A;
cr[WS(rs, 15)] = FNMS(T2C, T2D, T2B);
T2E = T2z * T2D;
ci[WS(rs, 15)] = FMA(T2C, T2A, T2E);
}
}
{
E T1L, T1R, T1P, T1T;
{
E T1J, T1K, T1N, T1O;
T1J = FMA(KP707106781, TW, TL);
T1K = T1y + T1z;
T1L = FNMS(KP923879532, T1K, T1J);
T1R = FMA(KP923879532, T1K, T1J);
T1N = FMA(KP707106781, T1w, T1t);
T1O = T1j + T18;
T1P = FNMS(KP923879532, T1O, T1N);
T1T = FMA(KP923879532, T1O, T1N);
}
{
E T1M, T1Q, T1S, T1U;
T1M = TB * T1L;
cr[WS(rs, 9)] = FNMS(TF, T1P, T1M);
T1Q = TB * T1P;
ci[WS(rs, 9)] = FMA(TF, T1L, T1Q);
T1S = Tv * T1R;
cr[WS(rs, 1)] = FNMS(Ty, T1T, T1S);
T1U = Tv * T1T;
ci[WS(rs, 1)] = FMA(Ty, T1R, T1U);
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 15 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, { 104, 42, 92, 0 } };
void X(codelet_hb2_16) (planner *p) {
X(khc2hc_register) (p, hb2_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hb2_16 -include rdft/scalar/hb.h */
/*
* This function contains 196 FP additions, 108 FP multiplications,
* (or, 156 additions, 68 multiplications, 40 fused multiply/add),
* 80 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hb.h"
static void hb2_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) {
E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X;
E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t;
{
E TA, T1J, T15, T1G, Tx, T1K, T16, T1F;
{
E T1m, T1s, T1o, T1r;
Tv = W[0];
Ty = W[1];
T1l = W[2];
T1n = W[3];
T1m = Tv * T1l;
T1s = Ty * T1l;
T1o = Ty * T1n;
T1r = Tv * T1n;
T1p = T1m + T1o;
T1t = T1r - T1s;
T27 = T1r + T1s;
T25 = T1m - T1o;
Tz = W[5];
TA = Ty * Tz;
T1J = T1l * Tz;
T15 = Tv * Tz;
T1G = T1n * Tz;
Tw = W[4];
Tx = Tv * Tw;
T1K = T1n * Tw;
T16 = Ty * Tw;
T1F = T1l * Tw;
}
TB = Tx - TA;
T21 = T1J + T1K;
T1P = T15 - T16;
T1H = T1F + T1G;
T1X = T1F - T1G;
T17 = T15 + T16;
T1L = T1J - T1K;
T1N = Tx + TA;
T1v = W[6];
T1w = W[7];
T1x = FMA(Tv, T1v, Ty * T1w);
T1B = FNMS(Ty, T1v, Tv * T1w);
{
E T2D, T2E, T29, T2a;
T2D = T25 * Tz;
T2E = T27 * Tw;
T2F = T2D + T2E;
T2T = T2D - T2E;
T29 = T25 * Tw;
T2a = T27 * Tz;
T2b = T29 - T2a;
T2R = T29 + T2a;
}
{
E T3h, T3i, T33, T34;
T3h = T1p * Tz;
T3i = T1t * Tw;
T3j = T3h + T3i;
T3x = T3h - T3i;
T33 = T1p * Tw;
T34 = T1t * Tz;
T35 = T33 - T34;
T3t = T33 + T34;
}
}
{
E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l;
E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O;
E T3e, T3o;
{
E T3, T2c, T1e, T2d, T6, T2G, T1b, T2H;
{
E T1, T2, T1c, T1d;
T1 = cr[0];
T2 = ci[WS(rs, 7)];
T3 = T1 + T2;
T2c = T1 - T2;
T1c = ci[WS(rs, 11)];
T1d = cr[WS(rs, 12)];
T1e = T1c - T1d;
T2d = T1c + T1d;
}
{
E T4, T5, T19, T1a;
T4 = cr[WS(rs, 4)];
T5 = ci[WS(rs, 3)];
T6 = T4 + T5;
T2G = T4 - T5;
T19 = ci[WS(rs, 15)];
T1a = cr[WS(rs, 8)];
T1b = T19 - T1a;
T2H = T19 + T1a;
}
T7 = T3 + T6;
T36 = T2c + T2d;
T3k = T2H - T2G;
TC = T3 - T6;
T1f = T1b - T1e;
T2e = T2c - T2d;
T2I = T2G + T2H;
T1Q = T1b + T1e;
}
{
E Ta, T2f, TI, T2g, Td, T2i, TF, T2j;
{
E T8, T9, TG, TH;
T8 = cr[WS(rs, 2)];
T9 = ci[WS(rs, 5)];
Ta = T8 + T9;
T2f = T8 - T9;
TG = ci[WS(rs, 13)];
TH = cr[WS(rs, 10)];
TI = TG - TH;
T2g = TG + TH;
}
{
E Tb, Tc, TD, TE;
Tb = ci[WS(rs, 1)];
Tc = cr[WS(rs, 6)];
Td = Tb + Tc;
T2i = Tb - Tc;
TD = ci[WS(rs, 9)];
TE = cr[WS(rs, 14)];
TF = TD - TE;
T2j = TD + TE;
}
Te = Ta + Td;
TJ = TF - TI;
T1R = TI + TF;
T18 = Ta - Td;
{
E T2J, T2K, T2h, T2k;
T2J = T2f + T2g;
T2K = T2i + T2j;
T2L = KP707106781 * (T2J - T2K);
T37 = KP707106781 * (T2J + T2K);
T2h = T2f - T2g;
T2k = T2i - T2j;
T2l = KP707106781 * (T2h + T2k);
T3l = KP707106781 * (T2h - T2k);
}
}
{
E Ti, T2x, TR, T2y, Tl, T2u, TO, T2v, TL, TS;
{
E Tg, Th, TP, TQ;
Tg = cr[WS(rs, 1)];
Th = ci[WS(rs, 6)];
Ti = Tg + Th;
T2x = Tg - Th;
TP = ci[WS(rs, 10)];
TQ = cr[WS(rs, 13)];
TR = TP - TQ;
T2y = TP + TQ;
}
{
E Tj, Tk, TM, TN;
Tj = cr[WS(rs, 5)];
Tk = ci[WS(rs, 2)];
Tl = Tj + Tk;
T2u = Tj - Tk;
TM = ci[WS(rs, 14)];
TN = cr[WS(rs, 9)];
TO = TM - TN;
T2v = TM + TN;
}
Tm = Ti + Tl;
T1T = TO + TR;
TL = Ti - Tl;
TS = TO - TR;
TT = TL - TS;
T1h = TL + TS;
{
E T2w, T2z, T39, T3a;
T2w = T2u + T2v;
T2z = T2x - T2y;
T2A = FMA(KP923879532, T2w, KP382683432 * T2z);
T2N = FNMS(KP382683432, T2w, KP923879532 * T2z);
T39 = T2x + T2y;
T3a = T2v - T2u;
T3b = FNMS(KP923879532, T3a, KP382683432 * T39);
T3n = FMA(KP382683432, T3a, KP923879532 * T39);
}
}
{
E Tp, T2q, T10, T2r, Ts, T2n, TX, T2o, TU, T11;
{
E Tn, To, TY, TZ;
Tn = ci[0];
To = cr[WS(rs, 7)];
Tp = Tn + To;
T2q = Tn - To;
TY = ci[WS(rs, 12)];
TZ = cr[WS(rs, 11)];
T10 = TY - TZ;
T2r = TY + TZ;
}
{
E Tq, Tr, TV, TW;
Tq = cr[WS(rs, 3)];
Tr = ci[WS(rs, 4)];
Ts = Tq + Tr;
T2n = Tq - Tr;
TV = ci[WS(rs, 8)];
TW = cr[WS(rs, 15)];
TX = TV - TW;
T2o = TV + TW;
}
Tt = Tp + Ts;
T1U = TX + T10;
TU = Tp - Ts;
T11 = TX - T10;
T12 = TU + T11;
T1i = T11 - TU;
{
E T2p, T2s, T3c, T3d;
T2p = T2n - T2o;
T2s = T2q - T2r;
T2t = FNMS(KP382683432, T2s, KP923879532 * T2p);
T2O = FMA(KP382683432, T2p, KP923879532 * T2s);
T3c = T2q + T2r;
T3d = T2n + T2o;
T3e = FNMS(KP923879532, T3d, KP382683432 * T3c);
T3o = FMA(KP382683432, T3d, KP923879532 * T3c);
}
}
{
E Tf, Tu, T1O, T1S, T1V, T1W;
Tf = T7 + Te;
Tu = Tm + Tt;
T1O = Tf - Tu;
T1S = T1Q + T1R;
T1V = T1T + T1U;
T1W = T1S - T1V;
cr[0] = Tf + Tu;
ci[0] = T1S + T1V;
cr[WS(rs, 8)] = FNMS(T1P, T1W, T1N * T1O);
ci[WS(rs, 8)] = FMA(T1P, T1O, T1N * T1W);
}
{
E T3g, T3r, T3q, T3s;
{
E T38, T3f, T3m, T3p;
T38 = T36 - T37;
T3f = T3b + T3e;
T3g = T38 - T3f;
T3r = T38 + T3f;
T3m = T3k + T3l;
T3p = T3n - T3o;
T3q = T3m - T3p;
T3s = T3m + T3p;
}
cr[WS(rs, 11)] = FNMS(T3j, T3q, T35 * T3g);
ci[WS(rs, 11)] = FMA(T3j, T3g, T35 * T3q);
cr[WS(rs, 3)] = FNMS(T1n, T3s, T1l * T3r);
ci[WS(rs, 3)] = FMA(T1n, T3r, T1l * T3s);
}
{
E T3w, T3B, T3A, T3C;
{
E T3u, T3v, T3y, T3z;
T3u = T36 + T37;
T3v = T3n + T3o;
T3w = T3u - T3v;
T3B = T3u + T3v;
T3y = T3k - T3l;
T3z = T3b - T3e;
T3A = T3y + T3z;
T3C = T3y - T3z;
}
cr[WS(rs, 7)] = FNMS(T3x, T3A, T3t * T3w);
ci[WS(rs, 7)] = FMA(T3t, T3A, T3x * T3w);
cr[WS(rs, 15)] = FNMS(T1w, T3C, T1v * T3B);
ci[WS(rs, 15)] = FMA(T1v, T3C, T1w * T3B);
}
{
E T14, T1q, T1k, T1u;
{
E TK, T13, T1g, T1j;
TK = TC + TJ;
T13 = KP707106781 * (TT + T12);
T14 = TK - T13;
T1q = TK + T13;
T1g = T18 + T1f;
T1j = KP707106781 * (T1h + T1i);
T1k = T1g - T1j;
T1u = T1g + T1j;
}
cr[WS(rs, 10)] = FNMS(T17, T1k, TB * T14);
ci[WS(rs, 10)] = FMA(T17, T14, TB * T1k);
cr[WS(rs, 2)] = FNMS(T1t, T1u, T1p * T1q);
ci[WS(rs, 2)] = FMA(T1t, T1q, T1p * T1u);
}
{
E T1A, T1I, T1E, T1M;
{
E T1y, T1z, T1C, T1D;
T1y = TC - TJ;
T1z = KP707106781 * (T1i - T1h);
T1A = T1y - T1z;
T1I = T1y + T1z;
T1C = T1f - T18;
T1D = KP707106781 * (TT - T12);
T1E = T1C - T1D;
T1M = T1C + T1D;
}
cr[WS(rs, 14)] = FNMS(T1B, T1E, T1x * T1A);
ci[WS(rs, 14)] = FMA(T1x, T1E, T1B * T1A);
cr[WS(rs, 6)] = FNMS(T1L, T1M, T1H * T1I);
ci[WS(rs, 6)] = FMA(T1H, T1M, T1L * T1I);
}
{
E T2C, T2S, T2Q, T2U;
{
E T2m, T2B, T2M, T2P;
T2m = T2e - T2l;
T2B = T2t - T2A;
T2C = T2m - T2B;
T2S = T2m + T2B;
T2M = T2I - T2L;
T2P = T2N - T2O;
T2Q = T2M - T2P;
T2U = T2M + T2P;
}
cr[WS(rs, 13)] = FNMS(T2F, T2Q, T2b * T2C);
ci[WS(rs, 13)] = FMA(T2F, T2C, T2b * T2Q);
cr[WS(rs, 5)] = FNMS(T2T, T2U, T2R * T2S);
ci[WS(rs, 5)] = FMA(T2T, T2S, T2R * T2U);
}
{
E T2X, T31, T30, T32;
{
E T2V, T2W, T2Y, T2Z;
T2V = T2e + T2l;
T2W = T2N + T2O;
T2X = T2V - T2W;
T31 = T2V + T2W;
T2Y = T2I + T2L;
T2Z = T2A + T2t;
T30 = T2Y - T2Z;
T32 = T2Y + T2Z;
}
cr[WS(rs, 9)] = FNMS(Tz, T30, Tw * T2X);
ci[WS(rs, 9)] = FMA(Tw, T30, Tz * T2X);
cr[WS(rs, 1)] = FNMS(Ty, T32, Tv * T31);
ci[WS(rs, 1)] = FMA(Tv, T32, Ty * T31);
}
{
E T20, T26, T24, T28;
{
E T1Y, T1Z, T22, T23;
T1Y = T7 - Te;
T1Z = T1U - T1T;
T20 = T1Y - T1Z;
T26 = T1Y + T1Z;
T22 = T1Q - T1R;
T23 = Tm - Tt;
T24 = T22 - T23;
T28 = T23 + T22;
}
cr[WS(rs, 12)] = FNMS(T21, T24, T1X * T20);
ci[WS(rs, 12)] = FMA(T1X, T24, T21 * T20);
cr[WS(rs, 4)] = FNMS(T27, T28, T25 * T26);
ci[WS(rs, 4)] = FMA(T25, T28, T27 * T26);
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 1, 1 },
{ TW_CEXP, 1, 3 },
{ TW_CEXP, 1, 9 },
{ TW_CEXP, 1, 15 },
{ TW_NEXT, 1, 0 }
};
static const hc2hc_desc desc = { 16, "hb2_16", twinstr, &GENUS, { 156, 68, 40, 0 } };
void X(codelet_hb2_16) (planner *p) {
X(khc2hc_register) (p, hb2_16, &desc);
}
#endif