mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-18 22:40:20 +00:00
193 lines
7.5 KiB
C
193 lines
7.5 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:47:22 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 29 FP additions, 30 FP multiplications,
|
||
|
* (or, 17 additions, 18 multiplications, 12 fused multiply/add),
|
||
|
* 38 stack variables, 2 constants, and 12 memory accesses
|
||
|
*/
|
||
|
#include "rdft/simd/hc2cfv.h"
|
||
|
|
||
|
static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
||
|
V T8, Tr, Tf, Tk, Tl, Ts, Tt, Tu, T3, Tj, Te, Th, T7, Ta, T1;
|
||
|
V T2, Ti, Tc, Td, Tb, Tg, T5, T6, T4, T9, Tm, Tv, Tp, Tq, Tn;
|
||
|
V To, Ty, Tz, Tw, Tx;
|
||
|
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
||
|
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
||
|
T3 = VFMACONJ(T2, T1);
|
||
|
Ti = LDW(&(W[0]));
|
||
|
Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
|
||
|
Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
||
|
Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
||
|
Tb = LDW(&(W[TWVL * 8]));
|
||
|
Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
|
||
|
Tg = LDW(&(W[TWVL * 6]));
|
||
|
Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
|
||
|
T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
||
|
T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
||
|
T4 = LDW(&(W[TWVL * 4]));
|
||
|
T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
|
||
|
T9 = LDW(&(W[TWVL * 2]));
|
||
|
Ta = VZMULJ(T9, VFMACONJ(T6, T5));
|
||
|
T8 = VSUB(T3, T7);
|
||
|
Tr = VADD(T3, T7);
|
||
|
Tf = VSUB(Ta, Te);
|
||
|
Tk = VSUB(Th, Tj);
|
||
|
Tl = VADD(Tf, Tk);
|
||
|
Ts = VADD(Ta, Te);
|
||
|
Tt = VADD(Tj, Th);
|
||
|
Tu = VADD(Ts, Tt);
|
||
|
Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
|
||
|
ST(&(Rp[0]), Tm, ms, &(Rp[0]));
|
||
|
Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
|
||
|
ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
|
||
|
Tn = VFNMS(LDK(KP500000000), Tl, T8);
|
||
|
To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
|
||
|
Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
|
||
|
Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
|
||
|
ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
|
||
|
ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
|
||
|
Tw = VFNMS(LDK(KP500000000), Tu, Tr);
|
||
|
Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
|
||
|
Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
|
||
|
Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
|
||
|
ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
|
||
|
ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(1, 1),
|
||
|
VTW(1, 2),
|
||
|
VTW(1, 3),
|
||
|
VTW(1, 4),
|
||
|
VTW(1, 5),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 17, 18, 12, 0 } };
|
||
|
|
||
|
void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include rdft/simd/hc2cfv.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 29 FP additions, 20 FP multiplications,
|
||
|
* (or, 27 additions, 18 multiplications, 2 fused multiply/add),
|
||
|
* 42 stack variables, 3 constants, and 12 memory accesses
|
||
|
*/
|
||
|
#include "rdft/simd/hc2cfv.h"
|
||
|
|
||
|
static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
|
||
|
V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
|
||
|
V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
|
||
|
V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
|
||
|
T1 = LD(&(Rp[0]), ms, &(Rp[0]));
|
||
|
T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
|
||
|
Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
|
||
|
Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
|
||
|
Tf = VCONJ(Te);
|
||
|
T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
|
||
|
T7 = VCONJ(T6);
|
||
|
T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
|
||
|
T3 = VCONJ(T2);
|
||
|
T4 = VADD(T1, T3);
|
||
|
T5 = LDW(&(W[TWVL * 4]));
|
||
|
T9 = VZMULIJ(T5, VSUB(T7, T8));
|
||
|
Ta = VADD(T4, T9);
|
||
|
Tu = VSUB(T4, T9);
|
||
|
Tj = LDW(&(W[0]));
|
||
|
Tk = VZMULIJ(Tj, VSUB(T3, T1));
|
||
|
Tl = LDW(&(W[TWVL * 6]));
|
||
|
Tm = VZMULJ(Tl, VADD(Tf, Tg));
|
||
|
Tn = VADD(Tk, Tm);
|
||
|
Tw = VSUB(Tm, Tk);
|
||
|
Tb = LDW(&(W[TWVL * 2]));
|
||
|
Tc = VZMULJ(Tb, VADD(T7, T8));
|
||
|
Td = LDW(&(W[TWVL * 8]));
|
||
|
Th = VZMULIJ(Td, VSUB(Tf, Tg));
|
||
|
Ti = VADD(Tc, Th);
|
||
|
Tv = VSUB(Tc, Th);
|
||
|
Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
|
||
|
To = VADD(Ti, Tn);
|
||
|
Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
|
||
|
Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
|
||
|
ST(&(Rp[0]), Tp, ms, &(Rp[0]));
|
||
|
Tt = VCONJ(VADD(Tq, Tr));
|
||
|
ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
|
||
|
Ts = VSUB(Tq, Tr);
|
||
|
ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
|
||
|
TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
|
||
|
Tx = VADD(Tv, Tw);
|
||
|
Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
|
||
|
Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
|
||
|
ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
|
||
|
TC = VADD(Tz, TA);
|
||
|
ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
|
||
|
TB = VCONJ(VSUB(Tz, TA));
|
||
|
ST(&(Rm[0]), TB, -ms, &(Rm[0]));
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(1, 1),
|
||
|
VTW(1, 2),
|
||
|
VTW(1, 3),
|
||
|
VTW(1, 4),
|
||
|
VTW(1, 5),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, { 27, 18, 2, 0 } };
|
||
|
|
||
|
void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
|
||
|
}
|
||
|
#endif
|