furnace/extern/fftw/rdft/scalar/r2cb/r2cb_9.c

210 lines
7.5 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:47 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
/*
* This function contains 32 FP additions, 24 FP multiplications,
* (or, 8 additions, 0 multiplications, 24 fused multiply/add),
* 35 stack variables, 12 constants, and 18 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
DK(KP176326980, +0.176326980708464973471090386868618986121633062);
DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
DK(KP839099631, +0.839099631177280011763127298123181364687434283);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw;
{
E Ta, T1, T2, T9;
Ta = Ci[WS(csi, 3)];
T1 = Cr[0];
T2 = Cr[WS(csr, 3)];
T9 = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tp = FMA(KP1_732050807, Ta, T9);
Tb = FNMS(KP1_732050807, Ta, T9);
}
{
E T4, T7, Tk, Tf, Tj, Tc;
T4 = Cr[WS(csr, 1)];
Th = Ci[WS(csi, 1)];
{
E T5, T6, Td, Te;
T5 = Cr[WS(csr, 4)];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Tk = T6 - T5;
Td = Ci[WS(csi, 4)];
Te = Ci[WS(csi, 2)];
Tf = Td + Te;
Ti = Td - Te;
}
T8 = T4 + T7;
Tj = FNMS(KP500000000, Ti, Th);
Tl = FNMS(KP866025403, Tk, Tj);
Tq = FMA(KP866025403, Tk, Tj);
Tc = FNMS(KP500000000, T7, T4);
Tg = FNMS(KP866025403, Tf, Tc);
Tr = FMA(KP866025403, Tf, Tc);
}
R0[0] = FMA(KP2_000000000, T8, T3);
Tv = T3 - T8;
Tw = Ti + Th;
R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv);
R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv);
{
E To, Tm, Tn, Tu, Ts, Tt;
To = FMA(KP839099631, Tg, Tl);
Tm = FNMS(KP839099631, Tl, Tg);
Tn = FNMS(KP766044443, Tm, Tb);
R1[0] = FMA(KP1_532088886, Tm, Tb);
R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn);
R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn);
Tu = FMA(KP176326980, Tq, Tr);
Ts = FNMS(KP176326980, Tr, Tq);
Tt = FMA(KP984807753, Ts, Tp);
R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp);
R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt);
R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt);
}
}
}
}
static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS };
void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
/*
* This function contains 32 FP additions, 18 FP multiplications,
* (or, 22 additions, 8 multiplications, 10 fused multiply/add),
* 35 stack variables, 12 constants, and 18 memory accesses
*/
#include "rdft/scalar/r2cb.h"
static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
DK(KP173648177, +0.173648177666930348851716626769314796000375677);
DK(KP300767466, +0.300767466360870593278543795225003852144476517);
DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
DK(KP642787609, +0.642787609686539326322643409907263432907559884);
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx;
{
E Tb, T1, T2, T9, Ta;
Ta = Ci[WS(csi, 3)];
Tb = KP1_732050807 * Ta;
T1 = Cr[0];
T2 = Cr[WS(csr, 3)];
T9 = T1 - T2;
T3 = FMA(KP2_000000000, T2, T1);
Tq = T9 + Tb;
Tc = T9 - Tb;
}
{
E T4, T7, Ti, Tg, Tl, Td;
T4 = Cr[WS(csr, 1)];
Tk = Ci[WS(csi, 1)];
{
E T5, T6, Te, Tf;
T5 = Cr[WS(csr, 4)];
T6 = Cr[WS(csr, 2)];
T7 = T5 + T6;
Ti = KP866025403 * (T5 - T6);
Te = Ci[WS(csi, 4)];
Tf = Ci[WS(csi, 2)];
Tg = KP866025403 * (Te + Tf);
Tj = Tf - Te;
}
T8 = T4 + T7;
Tl = FMA(KP500000000, Tj, Tk);
Tm = Ti + Tl;
Ts = Tl - Ti;
Td = FNMS(KP500000000, T7, T4);
Th = Td - Tg;
Tr = Td + Tg;
}
R0[0] = FMA(KP2_000000000, T8, T3);
Tw = T3 - T8;
Tx = KP1_732050807 * (Tk - Tj);
R1[WS(rs, 1)] = Tw - Tx;
R0[WS(rs, 3)] = Tw + Tx;
{
E Tp, Tn, To, Tv, Tt, Tu;
Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm);
Tn = FNMS(KP642787609, Tm, KP766044443 * Th);
To = Tc - Tn;
R1[0] = FMA(KP2_000000000, Tn, Tc);
R1[WS(rs, 3)] = To + Tp;
R0[WS(rs, 2)] = To - Tp;
Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts);
Tt = FNMS(KP984807753, Ts, KP173648177 * Tr);
Tu = Tq - Tt;
R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq);
R0[WS(rs, 4)] = Tu + Tv;
R1[WS(rs, 2)] = Tu - Tv;
}
}
}
}
static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS };
void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
}
#endif