mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-18 18:45:10 +00:00
488 lines
15 KiB
C
488 lines
15 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* Distributed transposes using a sequence of carefully scheduled
|
||
|
pairwise exchanges. This has the advantage that it can be done
|
||
|
in-place, or out-of-place while preserving the input, using buffer
|
||
|
space proportional to the local size divided by the number of
|
||
|
processes (i.e. to the total array size divided by the number of
|
||
|
processes squared). */
|
||
|
|
||
|
#include "mpi-transpose.h"
|
||
|
#include <string.h>
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_mpi_transpose super;
|
||
|
|
||
|
plan *cld1, *cld2, *cld2rest, *cld3;
|
||
|
INT rest_Ioff, rest_Ooff;
|
||
|
|
||
|
int n_pes, my_pe, *sched;
|
||
|
INT *send_block_sizes, *send_block_offsets;
|
||
|
INT *recv_block_sizes, *recv_block_offsets;
|
||
|
MPI_Comm comm;
|
||
|
int preserve_input;
|
||
|
} P;
|
||
|
|
||
|
static void transpose_chunks(int *sched, int n_pes, int my_pe,
|
||
|
INT *sbs, INT *sbo, INT *rbs, INT *rbo,
|
||
|
MPI_Comm comm,
|
||
|
R *I, R *O)
|
||
|
{
|
||
|
if (sched) {
|
||
|
int i;
|
||
|
MPI_Status status;
|
||
|
|
||
|
/* TODO: explore non-synchronous send/recv? */
|
||
|
|
||
|
if (I == O) {
|
||
|
R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS);
|
||
|
|
||
|
for (i = 0; i < n_pes; ++i) {
|
||
|
int pe = sched[i];
|
||
|
if (my_pe == pe) {
|
||
|
if (rbo[pe] != sbo[pe])
|
||
|
memmove(O + rbo[pe], O + sbo[pe],
|
||
|
sbs[pe] * sizeof(R));
|
||
|
}
|
||
|
else {
|
||
|
memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R));
|
||
|
MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE,
|
||
|
pe, (my_pe * n_pes + pe) & 0x7fff,
|
||
|
O + rbo[pe], (int) (rbs[pe]),
|
||
|
FFTW_MPI_TYPE,
|
||
|
pe, (pe * n_pes + my_pe) & 0x7fff,
|
||
|
comm, &status);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
X(ifree)(buf);
|
||
|
}
|
||
|
else { /* I != O */
|
||
|
for (i = 0; i < n_pes; ++i) {
|
||
|
int pe = sched[i];
|
||
|
if (my_pe == pe)
|
||
|
memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R));
|
||
|
else
|
||
|
MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]),
|
||
|
FFTW_MPI_TYPE,
|
||
|
pe, (my_pe * n_pes + pe) & 0x7fff,
|
||
|
O + rbo[pe], (int) (rbs[pe]),
|
||
|
FFTW_MPI_TYPE,
|
||
|
pe, (pe * n_pes + my_pe) & 0x7fff,
|
||
|
comm, &status);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void apply(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
plan_rdft *cld1, *cld2, *cld2rest, *cld3;
|
||
|
|
||
|
/* transpose locally to get contiguous chunks */
|
||
|
cld1 = (plan_rdft *) ego->cld1;
|
||
|
if (cld1) {
|
||
|
cld1->apply(ego->cld1, I, O);
|
||
|
|
||
|
if (ego->preserve_input) I = O;
|
||
|
|
||
|
/* transpose chunks globally */
|
||
|
transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
|
||
|
ego->send_block_sizes, ego->send_block_offsets,
|
||
|
ego->recv_block_sizes, ego->recv_block_offsets,
|
||
|
ego->comm, O, I);
|
||
|
}
|
||
|
else if (ego->preserve_input) {
|
||
|
/* transpose chunks globally */
|
||
|
transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
|
||
|
ego->send_block_sizes, ego->send_block_offsets,
|
||
|
ego->recv_block_sizes, ego->recv_block_offsets,
|
||
|
ego->comm, I, O);
|
||
|
|
||
|
I = O;
|
||
|
}
|
||
|
else {
|
||
|
/* transpose chunks globally */
|
||
|
transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
|
||
|
ego->send_block_sizes, ego->send_block_offsets,
|
||
|
ego->recv_block_sizes, ego->recv_block_offsets,
|
||
|
ego->comm, I, I);
|
||
|
}
|
||
|
|
||
|
/* transpose locally, again, to get ordinary row-major;
|
||
|
this may take two transposes if the block sizes are unequal
|
||
|
(3 subplans, two of which operate on disjoint data) */
|
||
|
cld2 = (plan_rdft *) ego->cld2;
|
||
|
cld2->apply(ego->cld2, I, O);
|
||
|
cld2rest = (plan_rdft *) ego->cld2rest;
|
||
|
if (cld2rest) {
|
||
|
cld2rest->apply(ego->cld2rest,
|
||
|
I + ego->rest_Ioff, O + ego->rest_Ooff);
|
||
|
cld3 = (plan_rdft *) ego->cld3;
|
||
|
if (cld3)
|
||
|
cld3->apply(ego->cld3, O, O);
|
||
|
/* else TRANSPOSED_OUT is true and user wants O transposed */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int applicable(const S *ego, const problem *p_,
|
||
|
const planner *plnr)
|
||
|
{
|
||
|
const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
|
||
|
/* Note: this is *not* UGLY for out-of-place, destroy-input plans;
|
||
|
the planner often prefers transpose-pairwise to transpose-alltoall,
|
||
|
at least with LAM MPI on my machine. */
|
||
|
return (1
|
||
|
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
|
||
|
&& p->I != p->O))
|
||
|
&& ONLY_TRANSPOSEDP(p->flags));
|
||
|
}
|
||
|
|
||
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_awake)(ego->cld1, wakefulness);
|
||
|
X(plan_awake)(ego->cld2, wakefulness);
|
||
|
X(plan_awake)(ego->cld2rest, wakefulness);
|
||
|
X(plan_awake)(ego->cld3, wakefulness);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(ifree0)(ego->sched);
|
||
|
X(ifree0)(ego->send_block_sizes);
|
||
|
MPI_Comm_free(&ego->comm);
|
||
|
X(plan_destroy_internal)(ego->cld3);
|
||
|
X(plan_destroy_internal)(ego->cld2rest);
|
||
|
X(plan_destroy_internal)(ego->cld2);
|
||
|
X(plan_destroy_internal)(ego->cld1);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))",
|
||
|
ego->preserve_input==2 ?"/p":"",
|
||
|
ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
|
||
|
}
|
||
|
|
||
|
/* Given a process which_pe and a number of processes npes, fills
|
||
|
the array sched[npes] with a sequence of processes to communicate
|
||
|
with for a deadlock-free, optimum-overlap all-to-all communication.
|
||
|
(All processes must call this routine to get their own schedules.)
|
||
|
The schedule can be re-ordered arbitrarily as long as all processes
|
||
|
apply the same permutation to their schedules.
|
||
|
|
||
|
The algorithm here is based upon the one described in:
|
||
|
J. A. M. Schreuder, "Constructing timetables for sport
|
||
|
competitions," Mathematical Programming Study 13, pp. 58-67 (1980).
|
||
|
In a sport competition, you have N teams and want every team to
|
||
|
play every other team in as short a time as possible (maximum overlap
|
||
|
between games). This timetabling problem is therefore identical
|
||
|
to that of an all-to-all communications problem. In our case, there
|
||
|
is one wrinkle: as part of the schedule, the process must do
|
||
|
some data transfer with itself (local data movement), analogous
|
||
|
to a requirement that each team "play itself" in addition to other
|
||
|
teams. With this wrinkle, it turns out that an optimal timetable
|
||
|
(N parallel games) can be constructed for any N, not just for even
|
||
|
N as in the original problem described by Schreuder.
|
||
|
*/
|
||
|
static void fill1_comm_sched(int *sched, int which_pe, int npes)
|
||
|
{
|
||
|
int pe, i, n, s = 0;
|
||
|
A(which_pe >= 0 && which_pe < npes);
|
||
|
if (npes % 2 == 0) {
|
||
|
n = npes;
|
||
|
sched[s++] = which_pe;
|
||
|
}
|
||
|
else
|
||
|
n = npes + 1;
|
||
|
for (pe = 0; pe < n - 1; ++pe) {
|
||
|
if (npes % 2 == 0) {
|
||
|
if (pe == which_pe) sched[s++] = npes - 1;
|
||
|
else if (npes - 1 == which_pe) sched[s++] = pe;
|
||
|
}
|
||
|
else if (pe == which_pe) sched[s++] = pe;
|
||
|
|
||
|
if (pe != which_pe && which_pe < n - 1) {
|
||
|
i = (pe - which_pe + (n - 1)) % (n - 1);
|
||
|
if (i < n/2)
|
||
|
sched[s++] = (pe + i) % (n - 1);
|
||
|
|
||
|
i = (which_pe - pe + (n - 1)) % (n - 1);
|
||
|
if (i < n/2)
|
||
|
sched[s++] = (pe - i + (n - 1)) % (n - 1);
|
||
|
}
|
||
|
}
|
||
|
A(s == npes);
|
||
|
}
|
||
|
|
||
|
/* Sort the communication schedule sched for npes so that the schedule
|
||
|
on process sortpe is ascending or descending (!ascending). This is
|
||
|
necessary to allow in-place transposes when the problem does not
|
||
|
divide equally among the processes. In this case there is one
|
||
|
process where the incoming blocks are bigger/smaller than the
|
||
|
outgoing blocks and thus have to be received in
|
||
|
descending/ascending order, respectively, to avoid overwriting data
|
||
|
before it is sent. */
|
||
|
static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
|
||
|
{
|
||
|
int *sortsched, i;
|
||
|
sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER);
|
||
|
fill1_comm_sched(sortsched, sortpe, npes);
|
||
|
if (ascending)
|
||
|
for (i = 0; i < npes; ++i)
|
||
|
sortsched[npes + sortsched[i]] = sched[i];
|
||
|
else
|
||
|
for (i = 0; i < npes; ++i)
|
||
|
sortsched[2*npes - 1 - sortsched[i]] = sched[i];
|
||
|
for (i = 0; i < npes; ++i)
|
||
|
sched[i] = sortsched[npes + i];
|
||
|
X(ifree)(sortsched);
|
||
|
}
|
||
|
|
||
|
/* make the plans to do the post-MPI transpositions (shared with
|
||
|
transpose-alltoall) */
|
||
|
int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr,
|
||
|
R *I, R *O, int my_pe,
|
||
|
plan **cld2, plan **cld2rest, plan **cld3,
|
||
|
INT *rest_Ioff, INT *rest_Ooff)
|
||
|
{
|
||
|
INT vn = p->vn;
|
||
|
INT b = p->block;
|
||
|
INT bt = XM(block)(p->ny, p->tblock, my_pe);
|
||
|
INT nxb = p->nx / b; /* number of equal-sized blocks */
|
||
|
INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */
|
||
|
|
||
|
*cld2 = *cld2rest = *cld3 = NULL;
|
||
|
*rest_Ioff = *rest_Ooff = 0;
|
||
|
|
||
|
if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) {
|
||
|
INT nx = p->nx * vn;
|
||
|
b *= vn;
|
||
|
*cld2 = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(X(mktensor_3d)
|
||
|
(nxb, bt * b, b,
|
||
|
bt, b, nx,
|
||
|
b, 1, 1),
|
||
|
I, O),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (!*cld2) goto nada;
|
||
|
|
||
|
if (nxr > 0) {
|
||
|
*rest_Ioff = nxb * bt * b;
|
||
|
*rest_Ooff = nxb * b;
|
||
|
b = nxr * vn;
|
||
|
*cld2rest = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(X(mktensor_2d)
|
||
|
(bt, b, nx,
|
||
|
b, 1, 1),
|
||
|
I + *rest_Ioff,
|
||
|
O + *rest_Ooff),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (!*cld2rest) goto nada;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
*cld2 = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(
|
||
|
X(mktensor_4d)
|
||
|
(nxb, bt * b * vn, bt * b * vn,
|
||
|
bt, b * vn, vn,
|
||
|
b, vn, bt * vn,
|
||
|
vn, 1, 1),
|
||
|
I, O),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (!*cld2) goto nada;
|
||
|
|
||
|
*rest_Ioff = *rest_Ooff = nxb * bt * b * vn;
|
||
|
*cld2rest = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(
|
||
|
X(mktensor_3d)
|
||
|
(bt, nxr * vn, vn,
|
||
|
nxr, vn, bt * vn,
|
||
|
vn, 1, 1),
|
||
|
I + *rest_Ioff, O + *rest_Ooff),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (!*cld2rest) goto nada;
|
||
|
|
||
|
if (!(p->flags & TRANSPOSED_OUT)) {
|
||
|
*cld3 = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(
|
||
|
X(mktensor_3d)
|
||
|
(p->nx, bt * vn, vn,
|
||
|
bt, vn, p->nx * vn,
|
||
|
vn, 1, 1),
|
||
|
O, O),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (!*cld3) goto nada;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
|
||
|
nada:
|
||
|
X(plan_destroy_internal)(*cld3);
|
||
|
X(plan_destroy_internal)(*cld2rest);
|
||
|
X(plan_destroy_internal)(*cld2);
|
||
|
*cld2 = *cld2rest = *cld3 = NULL;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
const problem_mpi_transpose *p;
|
||
|
P *pln;
|
||
|
plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
|
||
|
INT b, bt, vn, rest_Ioff, rest_Ooff;
|
||
|
INT *sbs, *sbo, *rbs, *rbo;
|
||
|
int pe, my_pe, n_pes, sort_pe = -1, ascending = 1;
|
||
|
R *I, *O;
|
||
|
static const plan_adt padt = {
|
||
|
XM(transpose_solve), awake, print, destroy
|
||
|
};
|
||
|
|
||
|
UNUSED(ego);
|
||
|
|
||
|
if (!applicable(ego, p_, plnr))
|
||
|
return (plan *) 0;
|
||
|
|
||
|
p = (const problem_mpi_transpose *) p_;
|
||
|
vn = p->vn;
|
||
|
I = p->I; O = p->O;
|
||
|
|
||
|
MPI_Comm_rank(p->comm, &my_pe);
|
||
|
MPI_Comm_size(p->comm, &n_pes);
|
||
|
|
||
|
b = XM(block)(p->nx, p->block, my_pe);
|
||
|
|
||
|
if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */
|
||
|
cld1 = X(mkplan_f_d)(plnr,
|
||
|
X(mkproblem_rdft_0_d)(X(mktensor_3d)
|
||
|
(b, p->ny * vn, vn,
|
||
|
p->ny, vn, b * vn,
|
||
|
vn, 1, 1),
|
||
|
I, O),
|
||
|
0, 0, NO_SLOW);
|
||
|
if (XM(any_true)(!cld1, p->comm)) goto nada;
|
||
|
}
|
||
|
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;
|
||
|
|
||
|
if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe,
|
||
|
&cld2, &cld2rest, &cld3,
|
||
|
&rest_Ioff, &rest_Ooff),
|
||
|
p->comm)) goto nada;
|
||
|
|
||
|
pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);
|
||
|
|
||
|
pln->cld1 = cld1;
|
||
|
pln->cld2 = cld2;
|
||
|
pln->cld2rest = cld2rest;
|
||
|
pln->rest_Ioff = rest_Ioff;
|
||
|
pln->rest_Ooff = rest_Ooff;
|
||
|
pln->cld3 = cld3;
|
||
|
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
|
||
|
|
||
|
MPI_Comm_dup(p->comm, &pln->comm);
|
||
|
|
||
|
n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block),
|
||
|
XM(num_blocks)(p->ny, p->tblock));
|
||
|
|
||
|
/* Compute sizes/offsets of blocks to exchange between processors */
|
||
|
sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS);
|
||
|
sbo = sbs + n_pes;
|
||
|
rbs = sbo + n_pes;
|
||
|
rbo = rbs + n_pes;
|
||
|
b = XM(block)(p->nx, p->block, my_pe);
|
||
|
bt = XM(block)(p->ny, p->tblock, my_pe);
|
||
|
for (pe = 0; pe < n_pes; ++pe) {
|
||
|
INT db, dbt; /* destination block sizes */
|
||
|
db = XM(block)(p->nx, p->block, pe);
|
||
|
dbt = XM(block)(p->ny, p->tblock, pe);
|
||
|
|
||
|
sbs[pe] = b * dbt * vn;
|
||
|
sbo[pe] = pe * (b * p->tblock) * vn;
|
||
|
rbs[pe] = db * bt * vn;
|
||
|
rbo[pe] = pe * (p->block * bt) * vn;
|
||
|
|
||
|
if (db * dbt > 0 && db * p->tblock != p->block * dbt) {
|
||
|
A(sort_pe == -1); /* only one process should need sorting */
|
||
|
sort_pe = pe;
|
||
|
ascending = db * p->tblock > p->block * dbt;
|
||
|
}
|
||
|
}
|
||
|
pln->n_pes = n_pes;
|
||
|
pln->my_pe = my_pe;
|
||
|
pln->send_block_sizes = sbs;
|
||
|
pln->send_block_offsets = sbo;
|
||
|
pln->recv_block_sizes = rbs;
|
||
|
pln->recv_block_offsets = rbo;
|
||
|
|
||
|
if (my_pe >= n_pes) {
|
||
|
pln->sched = 0; /* this process is not doing anything */
|
||
|
}
|
||
|
else {
|
||
|
pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS);
|
||
|
fill1_comm_sched(pln->sched, my_pe, n_pes);
|
||
|
if (sort_pe >= 0)
|
||
|
sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending);
|
||
|
}
|
||
|
|
||
|
X(ops_zero)(&pln->super.super.ops);
|
||
|
if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
|
||
|
if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
|
||
|
if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
|
||
|
if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
|
||
|
/* FIXME: should MPI operations be counted in "other" somehow? */
|
||
|
|
||
|
return &(pln->super.super);
|
||
|
|
||
|
nada:
|
||
|
X(plan_destroy_internal)(cld3);
|
||
|
X(plan_destroy_internal)(cld2rest);
|
||
|
X(plan_destroy_internal)(cld2);
|
||
|
X(plan_destroy_internal)(cld1);
|
||
|
return (plan *) 0;
|
||
|
}
|
||
|
|
||
|
static solver *mksolver(int preserve_input)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
slv->preserve_input = preserve_input;
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
void XM(transpose_pairwise_register)(planner *p)
|
||
|
{
|
||
|
int preserve_input;
|
||
|
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
|
||
|
REGISTER_SOLVER(p, mksolver(preserve_input));
|
||
|
}
|