furnace/extern/fftw/rdft/scalar/r2cb/r2cbIII_7.c

149 lines
6 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:46:59 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 24 FP additions, 22 FP multiplications,
* (or, 2 additions, 0 multiplications, 22 fused multiply/add),
* 27 stack variables, 7 constants, and 14 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
E T1, T9, Tb, Ta, Tc, Tm, Th, T7, Tk, Tf, T5, Tl, Tn;
T1 = Cr[WS(csr, 3)];
T9 = Ci[WS(csi, 1)];
Tb = Ci[0];
Ta = Ci[WS(csi, 2)];
Tc = FMA(KP554958132, Tb, Ta);
Tm = FNMS(KP554958132, Ta, T9);
Th = FMA(KP554958132, T9, Tb);
{
E T2, T4, T3, T6, Tj, Te;
T2 = Cr[WS(csr, 2)];
T4 = Cr[0];
T3 = Cr[WS(csr, 1)];
T6 = FNMS(KP356895867, T3, T2);
Tj = FNMS(KP356895867, T4, T3);
Te = FNMS(KP356895867, T2, T4);
T7 = FNMS(KP692021471, T6, T4);
Tk = FNMS(KP692021471, Tj, T2);
Tf = FNMS(KP692021471, Te, T3);
T5 = T2 + T3 + T4;
}
R0[0] = FMA(KP2_000000000, T5, T1);
Tl = FNMS(KP1_801937735, Tk, T1);
Tn = FNMS(KP801937735, Tm, Tb);
R1[WS(rs, 1)] = -(FMA(KP1_949855824, Tn, Tl));
R0[WS(rs, 2)] = FNMS(KP1_949855824, Tn, Tl);
{
E T8, Td, Tg, Ti;
T8 = FNMS(KP1_801937735, T7, T1);
Td = FMA(KP801937735, Tc, T9);
R1[0] = -(FMA(KP1_949855824, Td, T8));
R0[WS(rs, 3)] = FNMS(KP1_949855824, Td, T8);
Tg = FNMS(KP1_801937735, Tf, T1);
Ti = FNMS(KP801937735, Th, Ta);
R0[WS(rs, 1)] = FMA(KP1_949855824, Ti, Tg);
R1[WS(rs, 2)] = FMS(KP1_949855824, Ti, Tg);
}
}
}
}
static const kr2c_desc desc = { 7, "r2cbIII_7", { 2, 0, 22, 0 }, &GENUS };
void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc);
}
#else
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */
/*
* This function contains 24 FP additions, 19 FP multiplications,
* (or, 9 additions, 4 multiplications, 15 fused multiply/add),
* 21 stack variables, 7 constants, and 14 memory accesses
*/
#include "rdft/scalar/r2cbIII.h"
static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
{
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
DK(KP445041867, +0.445041867912628808577805128993589518932711138);
DK(KP867767478, +0.867767478235116240951536665696717509219981456);
DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
{
INT i;
for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7;
T6 = Ci[WS(csi, 2)];
T8 = Ci[0];
T7 = Ci[WS(csi, 1)];
T9 = FMA(KP1_563662964, T6, KP1_949855824 * T7) + (KP867767478 * T8);
Td = FNMS(KP1_949855824, T8, KP1_563662964 * T7) - (KP867767478 * T6);
Tb = FNMS(KP1_563662964, T8, KP1_949855824 * T6) - (KP867767478 * T7);
T1 = Cr[WS(csr, 3)];
T4 = Cr[0];
T2 = Cr[WS(csr, 2)];
T3 = Cr[WS(csr, 1)];
T5 = FMA(KP445041867, T3, KP1_801937735 * T4) + FNMA(KP1_246979603, T2, T1);
Tc = FMA(KP1_801937735, T2, KP445041867 * T4) + FNMA(KP1_246979603, T3, T1);
Ta = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2);
R1[0] = T5 - T9;
R0[WS(rs, 3)] = -(T5 + T9);
R0[WS(rs, 2)] = Td - Tc;
R1[WS(rs, 1)] = Tc + Td;
R1[WS(rs, 2)] = Tb - Ta;
R0[WS(rs, 1)] = Ta + Tb;
R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1);
}
}
}
static const kr2c_desc desc = { 7, "r2cbIII_7", { 9, 4, 15, 0 }, &GENUS };
void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc);
}
#endif