furnace/extern/fftw/mpi/dft-rank1-bigvec.c

212 lines
6.4 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Complex DFTs of rank == 1 when the vector length vn is >= # processes.
In this case, we don't need to use a six-step type algorithm, and can
instead transpose the DFT dimension with the vector dimension to
make the DFT local. */
#include "mpi-dft.h"
#include "mpi-transpose.h"
#include "dft/dft.h"
typedef struct {
solver super;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
rearrangement rearrange;
} S;
typedef struct {
plan_mpi_dft super;
plan *cldt_before, *cld, *cldt_after;
INT roff, ioff;
int preserve_input;
rearrangement rearrange;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
plan_rdft *cldt_before, *cldt_after;
INT roff = ego->roff, ioff = ego->ioff;
/* global transpose */
cldt_before = (plan_rdft *) ego->cldt_before;
cldt_before->apply(ego->cldt_before, I, O);
if (ego->preserve_input) I = O;
/* 1d DFT(s) */
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, O+roff, O+ioff, I+roff, I+ioff);
/* global transpose */
cldt_after = (plan_rdft *) ego->cldt_after;
cldt_after->apply(ego->cldt_after, I, O);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
int n_pes;
MPI_Comm_size(p->comm, &n_pes);
return (1
&& p->sz->rnk == 1
&& !(p->flags & ~RANK1_BIGVEC_ONLY)
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& (p->vn >= n_pes /* TODO: relax this, using more memory? */
|| (p->flags & RANK1_BIGVEC_ONLY))
&& XM(rearrange_applicable)(ego->rearrange,
p->sz->dims[0], p->vn, n_pes)
&& (!NO_SLOWP(plnr) /* slow if dft-serial is applicable */
|| !XM(dft_serial_applicable)(p))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cldt_before, wakefulness);
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldt_after, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldt_after);
X(plan_destroy_internal)(ego->cld);
X(plan_destroy_internal)(ego->cldt_before);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
const char descrip[][16] = { "contig", "discontig", "square-after",
"square-middle", "square-before" };
p->print(p, "(mpi-dft-rank1-bigvec/%s%s %(%p%) %(%p%) %(%p%))",
descrip[ego->rearrange], ego->preserve_input==2 ?"/p":"",
ego->cldt_before, ego->cld, ego->cldt_after);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_dft *p;
P *pln;
plan *cld = 0, *cldt_before = 0, *cldt_after = 0;
R *ri, *ii, *ro, *io, *I, *O;
INT yblock, yb, nx, ny, vn;
int my_pe, n_pes;
static const plan_adt padt = {
XM(dft_solve), awake, print, destroy
};
UNUSED(ego);
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_dft *) p_;
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
nx = p->sz->dims[0].n;
if (!(ny = XM(rearrange_ny)(ego->rearrange, p->sz->dims[0],p->vn,n_pes)))
return (plan *) 0;
vn = p->vn / ny;
A(ny * vn == p->vn);
yblock = XM(default_block)(ny, n_pes);
cldt_before = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
nx, ny, vn*2,
I = p->I, O = p->O,
p->sz->dims[0].b[IB], yblock,
p->comm, 0));
if (XM(any_true)(!cldt_before, p->comm)) goto nada;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) { I = O; }
X(extract_reim)(p->sign, I, &ri, &ii);
X(extract_reim)(p->sign, O, &ro, &io);
yb = XM(block)(ny, yblock, my_pe);
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(nx, vn*2, vn*2),
X(mktensor_2d)(yb, vn*2*nx, vn*2*nx,
vn, 2, 2),
ro, io, ri, ii));
if (XM(any_true)(!cld, p->comm)) goto nada;
cldt_after = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
ny, nx, vn*2,
I, O,
yblock, p->sz->dims[0].b[OB],
p->comm, 0));
if (XM(any_true)(!cldt_after, p->comm)) goto nada;
pln = MKPLAN_MPI_DFT(P, &padt, apply);
pln->cldt_before = cldt_before;
pln->cld = cld;
pln->cldt_after = cldt_after;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->roff = ro - p->O;
pln->ioff = io - p->O;
pln->rearrange = ego->rearrange;
X(ops_add)(&cldt_before->ops, &cld->ops, &pln->super.super.ops);
X(ops_add2)(&cldt_after->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldt_after);
X(plan_destroy_internal)(cld);
X(plan_destroy_internal)(cldt_before);
return (plan *) 0;
}
static solver *mksolver(rearrangement rearrange, int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->rearrange = rearrange;
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(dft_rank1_bigvec_register)(planner *p)
{
rearrangement rearrange;
int preserve_input;
FORALL_REARRANGE(rearrange)
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(rearrange, preserve_input));
}