furnace/extern/fftw/dft/ct.c

256 lines
6.2 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "dft/ct.h"
ct_solver *(*X(mksolver_ct_hook))(size_t, INT, int,
ct_mkinferior, ct_force_vrecursion) = 0;
typedef struct {
plan_dft super;
plan *cld;
plan *cldw;
INT r;
} P;
static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
plan_dftw *cldw;
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ri, ii, ro, io);
cldw = (plan_dftw *) ego->cldw;
cldw->apply(ego->cldw, ro, io);
}
static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
plan_dftw *cldw;
cldw = (plan_dftw *) ego->cldw;
cldw->apply(ego->cldw, ri, ii);
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, ri, ii, ro, io);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldw, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldw);
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(dft-ct-%s/%D%(%p%)%(%p%))",
ego->super.apply == apply_dit ? "dit" : "dif",
ego->r, ego->cldw, ego->cld);
}
static int applicable0(const ct_solver *ego, const problem *p_, planner *plnr)
{
const problem_dft *p = (const problem_dft *) p_;
INT r;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk <= 1
/* DIF destroys the input and we don't like it */
&& (ego->dec == DECDIT ||
p->ri == p->ro ||
!NO_DESTROY_INPUTP(plnr))
&& ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 1)
&& p->sz->dims[0].n > r);
}
int X(ct_applicable)(const ct_solver *ego, const problem *p_, planner *plnr)
{
const problem_dft *p;
if (!applicable0(ego, p_, plnr))
return 0;
p = (const problem_dft *) p_;
return (0
|| ego->dec == DECDIF+TRANSPOSE
|| p->vecsz->rnk == 0
|| !NO_VRECURSEP(plnr)
|| (ego->force_vrecursionp && ego->force_vrecursionp(ego, p))
);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const ct_solver *ego = (const ct_solver *) ego_;
const problem_dft *p;
P *pln = 0;
plan *cld = 0, *cldw = 0;
INT n, r, m, v, ivs, ovs;
iodim *d;
static const plan_adt padt = {
X(dft_solve), awake, print, destroy
};
if ((NO_NONTHREADEDP(plnr)) || !X(ct_applicable)(ego, p_, plnr))
return (plan *) 0;
p = (const problem_dft *) p_;
d = p->sz->dims;
n = d[0].n;
r = X(choose_radix)(ego->r, n);
m = n / r;
X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
switch (ego->dec) {
case DECDIT:
{
cldw = ego->mkcldw(ego,
r, m * d[0].os, m * d[0].os,
m, d[0].os,
v, ovs, ovs,
0, m,
p->ro, p->io, plnr);
if (!cldw) goto nada;
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(
X(mktensor_1d)(m, r * d[0].is, d[0].os),
X(mktensor_2d)(r, d[0].is, m * d[0].os,
v, ivs, ovs),
p->ri, p->ii, p->ro, p->io)
);
if (!cld) goto nada;
pln = MKPLAN_DFT(P, &padt, apply_dit);
break;
}
case DECDIF:
case DECDIF+TRANSPOSE:
{
INT cors, covs; /* cldw ors, ovs */
if (ego->dec == DECDIF+TRANSPOSE) {
cors = ivs;
covs = m * d[0].is;
/* ensure that we generate well-formed dftw subproblems */
/* FIXME: too conservative */
if (!(1
&& r == v
&& d[0].is == r * cors))
goto nada;
/* FIXME: allow in-place only for now, like in
fftw-3.[01] */
if (!(1
&& p->ri == p->ro
&& d[0].is == r * d[0].os
&& cors == d[0].os
&& covs == ovs
))
goto nada;
} else {
cors = m * d[0].is;
covs = ivs;
}
cldw = ego->mkcldw(ego,
r, m * d[0].is, cors,
m, d[0].is,
v, ivs, covs,
0, m,
p->ri, p->ii, plnr);
if (!cldw) goto nada;
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(
X(mktensor_1d)(m, d[0].is, r * d[0].os),
X(mktensor_2d)(r, cors, d[0].os,
v, covs, ovs),
p->ri, p->ii, p->ro, p->io)
);
if (!cld) goto nada;
pln = MKPLAN_DFT(P, &padt, apply_dif);
break;
}
default: A(0);
}
pln->cld = cld;
pln->cldw = cldw;
pln->r = r;
X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
/* inherit could_prune_now_p attribute from cldw */
pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cldw);
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
ct_solver *X(mksolver_ct)(size_t size, INT r, int dec,
ct_mkinferior mkcldw,
ct_force_vrecursion force_vrecursionp)
{
static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
ct_solver *slv = (ct_solver *)X(mksolver)(size, &sadt);
slv->r = r;
slv->dec = dec;
slv->mkcldw = mkcldw;
slv->force_vrecursionp = force_vrecursionp;
return slv;
}
plan *X(mkplan_dftw)(size_t size, const plan_adt *adt, dftwapply apply)
{
plan_dftw *ego;
ego = (plan_dftw *) X(mkplan)(size, adt);
ego->apply = apply;
return &(ego->super);
}