mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-18 02:25:11 +00:00
546 lines
13 KiB
C
546 lines
13 KiB
C
|
/*
|
|||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
|||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
|||
|
*
|
|||
|
* This program is free software; you can redistribute it and/or modify
|
|||
|
* it under the terms of the GNU General Public License as published by
|
|||
|
* the Free Software Foundation; either version 2 of the License, or
|
|||
|
* (at your option) any later version.
|
|||
|
*
|
|||
|
* This program is distributed in the hope that it will be useful,
|
|||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
* GNU General Public License for more details.
|
|||
|
*
|
|||
|
* You should have received a copy of the GNU General Public License
|
|||
|
* along with this program; if not, write to the Free Software
|
|||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|||
|
*
|
|||
|
*/
|
|||
|
|
|||
|
|
|||
|
#include "verify.h"
|
|||
|
#include <math.h>
|
|||
|
#include <stdlib.h>
|
|||
|
#include <stdio.h>
|
|||
|
|
|||
|
/*
|
|||
|
* Utility functions:
|
|||
|
*/
|
|||
|
static double dabs(double x) { return (x < 0.0) ? -x : x; }
|
|||
|
static double dmin(double x, double y) { return (x < y) ? x : y; }
|
|||
|
static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
|
|||
|
|
|||
|
double dmax(double x, double y) { return (x > y) ? x : y; }
|
|||
|
|
|||
|
static double aerror(C *a, C *b, int n)
|
|||
|
{
|
|||
|
if (n > 0) {
|
|||
|
/* compute the relative Linf error */
|
|||
|
double e = 0.0, mag = 0.0;
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
|
|||
|
c_im(a[i]) - c_im(b[i])));
|
|||
|
mag = dmax(mag,
|
|||
|
dmin(norm2(c_re(a[i]), c_im(a[i])),
|
|||
|
norm2(c_re(b[i]), c_im(b[i]))));
|
|||
|
}
|
|||
|
e /= mag;
|
|||
|
|
|||
|
#ifdef HAVE_ISNAN
|
|||
|
BENCH_ASSERT(!isnan(e));
|
|||
|
#endif
|
|||
|
return e;
|
|||
|
} else
|
|||
|
return 0.0;
|
|||
|
}
|
|||
|
|
|||
|
#ifdef HAVE_DRAND48
|
|||
|
# if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
|
|||
|
extern double drand48(void);
|
|||
|
# endif
|
|||
|
double mydrand(void)
|
|||
|
{
|
|||
|
return drand48() - 0.5;
|
|||
|
}
|
|||
|
#else
|
|||
|
double mydrand(void)
|
|||
|
{
|
|||
|
double d = rand();
|
|||
|
return (d / (double) RAND_MAX) - 0.5;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
void arand(C *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
/* generate random inputs */
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c_re(a[i]) = mydrand();
|
|||
|
c_im(a[i]) = mydrand();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* make array real */
|
|||
|
void mkreal(C *A, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c_im(A[i]) = 0.0;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
|
|||
|
{
|
|||
|
if (rank == 0) {
|
|||
|
c_re(*Ac) = c_re(*A);
|
|||
|
c_im(*Ac) = -c_im(*A);
|
|||
|
}
|
|||
|
else {
|
|||
|
int i, n0 = dim[rank - 1].n, s = stride;
|
|||
|
rank -= 1;
|
|||
|
stride *= n0;
|
|||
|
assign_conj(Ac, A, rank, dim, stride);
|
|||
|
for (i = 1; i < n0; ++i)
|
|||
|
assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* make array hermitian */
|
|||
|
void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
|
|||
|
{
|
|||
|
if (rank == 0)
|
|||
|
c_im(*A) = 0.0;
|
|||
|
else {
|
|||
|
int i, n0 = dim[rank - 1].n, s = stride;
|
|||
|
rank -= 1;
|
|||
|
stride *= n0;
|
|||
|
mkhermitian(A, rank, dim, stride);
|
|||
|
for (i = 1; 2*i < n0; ++i)
|
|||
|
assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
|
|||
|
if (2*i == n0)
|
|||
|
mkhermitian(A + i * s, rank, dim, stride);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void mkhermitian1(C *a, int n)
|
|||
|
{
|
|||
|
bench_iodim d;
|
|||
|
|
|||
|
d.n = n;
|
|||
|
d.is = d.os = 1;
|
|||
|
mkhermitian(a, 1, &d, 1);
|
|||
|
}
|
|||
|
|
|||
|
/* C = A */
|
|||
|
void acopy(C *c, C *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c_re(c[i]) = c_re(a[i]);
|
|||
|
c_im(c[i]) = c_im(a[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* C = A + B */
|
|||
|
void aadd(C *c, C *a, C *b, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
|
|||
|
c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* C = A - B */
|
|||
|
void asub(C *c, C *a, C *b, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
|
|||
|
c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* B = rotate left A (complex) */
|
|||
|
void arol(C *b, C *a, int n, int nb, int na)
|
|||
|
{
|
|||
|
int i, ib, ia;
|
|||
|
|
|||
|
for (ib = 0; ib < nb; ++ib) {
|
|||
|
for (i = 0; i < n - 1; ++i)
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
C *pb = b + (ib * n + i) * na + ia;
|
|||
|
C *pa = a + (ib * n + i + 1) * na + ia;
|
|||
|
c_re(*pb) = c_re(*pa);
|
|||
|
c_im(*pb) = c_im(*pa);
|
|||
|
}
|
|||
|
|
|||
|
for (ia = 0; ia < na; ++ia) {
|
|||
|
C *pb = b + (ib * n + n - 1) * na + ia;
|
|||
|
C *pa = a + ib * n * na + ia;
|
|||
|
c_re(*pb) = c_re(*pa);
|
|||
|
c_im(*pb) = c_im(*pa);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
|
|||
|
{
|
|||
|
int j, jb, ja;
|
|||
|
trigreal twopin;
|
|||
|
twopin = K2PI / n;
|
|||
|
|
|||
|
for (jb = 0; jb < nb; ++jb)
|
|||
|
for (j = 0; j < n; ++j) {
|
|||
|
trigreal s = sign * SIN(j * twopin);
|
|||
|
trigreal c = COS(j * twopin);
|
|||
|
|
|||
|
for (ja = 0; ja < na; ++ja) {
|
|||
|
int k = (jb * n + j) * na + ja;
|
|||
|
c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
|
|||
|
c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* A = alpha * A (complex, in place) */
|
|||
|
void ascale(C *a, C alpha, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
|
|||
|
for (i = 0; i < n; ++i) {
|
|||
|
R xr = c_re(a[i]), xi = c_im(a[i]);
|
|||
|
c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
|
|||
|
c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
double acmp(C *a, C *b, int n, const char *test, double tol)
|
|||
|
{
|
|||
|
double d = aerror(a, b, n);
|
|||
|
if (d > tol) {
|
|||
|
ovtpvt_err("Found relative error %e (%s)\n", d, test);
|
|||
|
|
|||
|
{
|
|||
|
int i, N;
|
|||
|
N = n > 300 && verbose <= 2 ? 300 : n;
|
|||
|
for (i = 0; i < N; ++i)
|
|||
|
ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i,
|
|||
|
(double) c_re(a[i]), (double) c_im(a[i]),
|
|||
|
(double) c_re(b[i]), (double) c_im(b[i]));
|
|||
|
}
|
|||
|
|
|||
|
bench_exit(EXIT_FAILURE);
|
|||
|
}
|
|||
|
return d;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/*
|
|||
|
* Implementation of the FFT tester described in
|
|||
|
*
|
|||
|
* Funda Erg<EFBFBD>n. Testing multivariate linear functions: Overcoming the
|
|||
|
* generator bottleneck. In Proceedings of the Twenty-Seventh Annual
|
|||
|
* ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
|
|||
|
* Nevada, 29 May--1 June 1995.
|
|||
|
*
|
|||
|
* Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
|
|||
|
* the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
|
|||
|
*/
|
|||
|
|
|||
|
static double impulse0(dofft_closure *k,
|
|||
|
int n, int vecn,
|
|||
|
C *inA, C *inB, C *inC,
|
|||
|
C *outA, C *outB, C *outC,
|
|||
|
C *tmp, int rounds, double tol)
|
|||
|
{
|
|||
|
int N = n * vecn;
|
|||
|
double e = 0.0;
|
|||
|
int j;
|
|||
|
|
|||
|
k->apply(k, inA, tmp);
|
|||
|
e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
arand(inB, N);
|
|||
|
asub(inC, inA, inB, N);
|
|||
|
k->apply(k, inB, outB);
|
|||
|
k->apply(k, inC, outC);
|
|||
|
aadd(tmp, outB, outC, N);
|
|||
|
e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
double impulse(dofft_closure *k,
|
|||
|
int n, int vecn,
|
|||
|
C *inA, C *inB, C *inC,
|
|||
|
C *outA, C *outB, C *outC,
|
|||
|
C *tmp, int rounds, double tol)
|
|||
|
{
|
|||
|
int i, j;
|
|||
|
double e = 0.0;
|
|||
|
|
|||
|
/* check impulsive input */
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
|
|||
|
for (j = 0; j < n; ++j) {
|
|||
|
c_re(inA[j + i * n]) = 0;
|
|||
|
c_im(inA[j + i * n]) = 0;
|
|||
|
c_re(outA[j + i * n]) = x;
|
|||
|
c_im(outA[j + i * n]) = 0;
|
|||
|
}
|
|||
|
c_re(inA[i * n]) = x;
|
|||
|
c_im(inA[i * n]) = 0;
|
|||
|
}
|
|||
|
|
|||
|
e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
|
|||
|
tmp, rounds, tol));
|
|||
|
|
|||
|
/* check constant input */
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
R x = (i+1) / ((double)(vecn+1) * sqrt(n));
|
|||
|
for (j = 0; j < n; ++j) {
|
|||
|
c_re(inA[j + i * n]) = x;
|
|||
|
c_im(inA[j + i * n]) = 0;
|
|||
|
c_re(outA[j + i * n]) = 0;
|
|||
|
c_im(outA[j + i * n]) = 0;
|
|||
|
}
|
|||
|
c_re(outA[i * n]) = n * x;
|
|||
|
c_im(outA[i * n]) = 0;
|
|||
|
}
|
|||
|
|
|||
|
e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
|
|||
|
tmp, rounds, tol));
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
double linear(dofft_closure *k, int realp,
|
|||
|
int n, C *inA, C *inB, C *inC, C *outA,
|
|||
|
C *outB, C *outC, C *tmp, int rounds, double tol)
|
|||
|
{
|
|||
|
int j;
|
|||
|
double e = 0.0;
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
C alpha, beta;
|
|||
|
c_re(alpha) = mydrand();
|
|||
|
c_im(alpha) = realp ? 0.0 : mydrand();
|
|||
|
c_re(beta) = mydrand();
|
|||
|
c_im(beta) = realp ? 0.0 : mydrand();
|
|||
|
arand(inA, n);
|
|||
|
arand(inB, n);
|
|||
|
k->apply(k, inA, outA);
|
|||
|
k->apply(k, inB, outB);
|
|||
|
|
|||
|
ascale(outA, alpha, n);
|
|||
|
ascale(outB, beta, n);
|
|||
|
aadd(tmp, outA, outB, n);
|
|||
|
ascale(inA, alpha, n);
|
|||
|
ascale(inB, beta, n);
|
|||
|
aadd(inC, inA, inB, n);
|
|||
|
k->apply(k, inC, outC);
|
|||
|
|
|||
|
e = dmax(e, acmp(outC, tmp, n, "linear", tol));
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
double tf_shift(dofft_closure *k,
|
|||
|
int realp, const bench_tensor *sz,
|
|||
|
int n, int vecn, double sign,
|
|||
|
C *inA, C *inB, C *outA, C *outB, C *tmp,
|
|||
|
int rounds, double tol, int which_shift)
|
|||
|
{
|
|||
|
int nb, na, dim, N = n * vecn;
|
|||
|
int i, j;
|
|||
|
double e = 0.0;
|
|||
|
|
|||
|
/* test 3: check the time-shift property */
|
|||
|
/* the paper performs more tests, but this code should be fine too */
|
|||
|
|
|||
|
nb = 1;
|
|||
|
na = n;
|
|||
|
|
|||
|
/* check shifts across all SZ dimensions */
|
|||
|
for (dim = 0; dim < sz->rnk; ++dim) {
|
|||
|
int ncur = sz->dims[dim].n;
|
|||
|
|
|||
|
na /= ncur;
|
|||
|
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
arand(inA, N);
|
|||
|
|
|||
|
if (which_shift == TIME_SHIFT) {
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
if (realp) mkreal(inA + i * n, n);
|
|||
|
arol(inB + i * n, inA + i * n, ncur, nb, na);
|
|||
|
}
|
|||
|
k->apply(k, inA, outA);
|
|||
|
k->apply(k, inB, outB);
|
|||
|
for (i = 0; i < vecn; ++i)
|
|||
|
aphase_shift(tmp + i * n, outB + i * n, ncur,
|
|||
|
nb, na, sign);
|
|||
|
e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
|
|||
|
} else {
|
|||
|
for (i = 0; i < vecn; ++i) {
|
|||
|
if (realp)
|
|||
|
mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
|
|||
|
aphase_shift(inB + i * n, inA + i * n, ncur,
|
|||
|
nb, na, -sign);
|
|||
|
}
|
|||
|
k->apply(k, inA, outA);
|
|||
|
k->apply(k, inB, outB);
|
|||
|
for (i = 0; i < vecn; ++i)
|
|||
|
arol(tmp + i * n, outB + i * n, ncur, nb, na);
|
|||
|
e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
nb *= ncur;
|
|||
|
}
|
|||
|
return e;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void preserves_input(dofft_closure *k, aconstrain constrain,
|
|||
|
int n, C *inA, C *inB, C *outB, int rounds)
|
|||
|
{
|
|||
|
int j;
|
|||
|
int recopy_input = k->recopy_input;
|
|||
|
|
|||
|
k->recopy_input = 1;
|
|||
|
for (j = 0; j < rounds; ++j) {
|
|||
|
arand(inA, n);
|
|||
|
if (constrain)
|
|||
|
constrain(inA, n);
|
|||
|
|
|||
|
acopy(inB, inA, n);
|
|||
|
k->apply(k, inB, outB);
|
|||
|
acmp(inB, inA, n, "preserves_input", 0.0);
|
|||
|
}
|
|||
|
k->recopy_input = recopy_input;
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Make a copy of the size tensor, with the same dimensions, but with
|
|||
|
the strides corresponding to a "packed" row-major array with the
|
|||
|
given stride. */
|
|||
|
bench_tensor *verify_pack(const bench_tensor *sz, int s)
|
|||
|
{
|
|||
|
bench_tensor *x = tensor_copy(sz);
|
|||
|
if (BENCH_FINITE_RNK(x->rnk) && x->rnk > 0) {
|
|||
|
int i;
|
|||
|
x->dims[x->rnk - 1].is = s;
|
|||
|
x->dims[x->rnk - 1].os = s;
|
|||
|
for (i = x->rnk - 1; i > 0; --i) {
|
|||
|
x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
|
|||
|
x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
|
|||
|
}
|
|||
|
}
|
|||
|
return x;
|
|||
|
}
|
|||
|
|
|||
|
static int all_zero(C *a, int n)
|
|||
|
{
|
|||
|
int i;
|
|||
|
for (i = 0; i < n; ++i)
|
|||
|
if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
|
|||
|
return 0;
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
|
|||
|
int sign, int n, C *a, C *b,
|
|||
|
double t[6])
|
|||
|
{
|
|||
|
double err[6];
|
|||
|
|
|||
|
if (constrain)
|
|||
|
constrain(a, n);
|
|||
|
|
|||
|
if (all_zero(a, n))
|
|||
|
return 0;
|
|||
|
|
|||
|
k->apply(k, a, b);
|
|||
|
fftaccuracy(n, a, b, sign, err);
|
|||
|
|
|||
|
t[0] += err[0];
|
|||
|
t[1] += err[1] * err[1];
|
|||
|
t[2] = dmax(t[2], err[2]);
|
|||
|
t[3] += err[3];
|
|||
|
t[4] += err[4] * err[4];
|
|||
|
t[5] = dmax(t[5], err[5]);
|
|||
|
|
|||
|
return 1;
|
|||
|
}
|
|||
|
|
|||
|
void accuracy_test(dofft_closure *k, aconstrain constrain,
|
|||
|
int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
|
|||
|
double t[6])
|
|||
|
{
|
|||
|
int r, i;
|
|||
|
int ntests = 0;
|
|||
|
bench_complex czero = {0, 0};
|
|||
|
|
|||
|
for (i = 0; i < 6; ++i) t[i] = 0.0;
|
|||
|
|
|||
|
for (r = 0; r < rounds; ++r) {
|
|||
|
arand(a, n);
|
|||
|
if (one_accuracy_test(k, constrain, sign, n, a, b, t))
|
|||
|
++ntests;
|
|||
|
}
|
|||
|
|
|||
|
/* impulses at beginning of array */
|
|||
|
for (r = 0; r < impulse_rounds; ++r) {
|
|||
|
if (r > n - r - 1)
|
|||
|
continue;
|
|||
|
|
|||
|
caset(a, n, czero);
|
|||
|
c_re(a[r]) = c_im(a[r]) = 1.0;
|
|||
|
|
|||
|
if (one_accuracy_test(k, constrain, sign, n, a, b, t))
|
|||
|
++ntests;
|
|||
|
}
|
|||
|
|
|||
|
/* impulses at end of array */
|
|||
|
for (r = 0; r < impulse_rounds; ++r) {
|
|||
|
if (r <= n - r - 1)
|
|||
|
continue;
|
|||
|
|
|||
|
caset(a, n, czero);
|
|||
|
c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
|
|||
|
|
|||
|
if (one_accuracy_test(k, constrain, sign, n, a, b, t))
|
|||
|
++ntests;
|
|||
|
}
|
|||
|
|
|||
|
/* randomly-located impulses */
|
|||
|
for (r = 0; r < impulse_rounds; ++r) {
|
|||
|
caset(a, n, czero);
|
|||
|
i = rand() % n;
|
|||
|
c_re(a[i]) = c_im(a[i]) = 1.0;
|
|||
|
|
|||
|
if (one_accuracy_test(k, constrain, sign, n, a, b, t))
|
|||
|
++ntests;
|
|||
|
}
|
|||
|
|
|||
|
t[0] /= ntests;
|
|||
|
t[1] = sqrt(t[1] / ntests);
|
|||
|
t[3] /= ntests;
|
|||
|
t[4] = sqrt(t[4] / ntests);
|
|||
|
|
|||
|
fftaccuracy_done();
|
|||
|
}
|