furnace/extern/fftw/dft/simd/common/t2fv_16.c

427 lines
13 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:45:43 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */
/*
* This function contains 87 FP additions, 64 FP multiplications,
* (or, 53 additions, 30 multiplications, 34 fused multiply/add),
* 36 stack variables, 3 constants, and 32 memory accesses
*/
#include "dft/simd/t2f.h"
static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
V T4, TW, T9, T19, TD, TI, TZ, T1a, Tf, Tk, Tl, T13, T1c, Tq, Tv;
V Tw, T16, T1d, T1, T3, T2;
T1 = LD(&(x[0]), ms, &(x[0]));
T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
T3 = BYTWJ(&(W[TWVL * 14]), T2);
T4 = VADD(T1, T3);
TW = VSUB(T1, T3);
{
V T6, T8, T5, T7;
T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
T6 = BYTWJ(&(W[TWVL * 6]), T5);
T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
T8 = BYTWJ(&(W[TWVL * 22]), T7);
T9 = VADD(T6, T8);
T19 = VSUB(T6, T8);
}
{
V TA, TH, TC, TF, TX, TY;
{
V Tz, TG, TB, TE;
Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
TA = BYTWJ(&(W[TWVL * 26]), Tz);
TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
TH = BYTWJ(&(W[TWVL * 18]), TG);
TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
TC = BYTWJ(&(W[TWVL * 10]), TB);
TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
TF = BYTWJ(&(W[TWVL * 2]), TE);
}
TD = VADD(TA, TC);
TI = VADD(TF, TH);
TX = VSUB(TF, TH);
TY = VSUB(TA, TC);
TZ = VADD(TX, TY);
T1a = VSUB(TY, TX);
}
{
V Tc, Tj, Te, Th, T11, T12;
{
V Tb, Ti, Td, Tg;
Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Tc = BYTWJ(&(W[0]), Tb);
Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Tj = BYTWJ(&(W[TWVL * 24]), Ti);
Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Te = BYTWJ(&(W[TWVL * 16]), Td);
Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Th = BYTWJ(&(W[TWVL * 8]), Tg);
}
Tf = VADD(Tc, Te);
Tk = VADD(Th, Tj);
Tl = VSUB(Tf, Tk);
T11 = VSUB(Tc, Te);
T12 = VSUB(Th, Tj);
T13 = VFNMS(LDK(KP414213562), T12, T11);
T1c = VFMA(LDK(KP414213562), T11, T12);
}
{
V Tn, Tu, Tp, Ts, T14, T15;
{
V Tm, Tt, To, Tr;
Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Tn = BYTWJ(&(W[TWVL * 28]), Tm);
Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Tu = BYTWJ(&(W[TWVL * 20]), Tt);
To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Tp = BYTWJ(&(W[TWVL * 12]), To);
Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Ts = BYTWJ(&(W[TWVL * 4]), Tr);
}
Tq = VADD(Tn, Tp);
Tv = VADD(Ts, Tu);
Tw = VSUB(Tq, Tv);
T14 = VSUB(Tn, Tp);
T15 = VSUB(Tu, Ts);
T16 = VFNMS(LDK(KP414213562), T15, T14);
T1d = VFMA(LDK(KP414213562), T14, T15);
}
{
V Ty, TM, TL, TN;
{
V Ta, Tx, TJ, TK;
Ta = VSUB(T4, T9);
Tx = VADD(Tl, Tw);
Ty = VFNMS(LDK(KP707106781), Tx, Ta);
TM = VFMA(LDK(KP707106781), Tx, Ta);
TJ = VSUB(TD, TI);
TK = VSUB(Tw, Tl);
TL = VFNMS(LDK(KP707106781), TK, TJ);
TN = VFMA(LDK(KP707106781), TK, TJ);
}
ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0]));
ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0]));
ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0]));
}
{
V T1k, T1o, T1n, T1p;
{
V T1i, T1j, T1l, T1m;
T1i = VFNMS(LDK(KP707106781), TZ, TW);
T1j = VADD(T1c, T1d);
T1k = VFNMS(LDK(KP923879532), T1j, T1i);
T1o = VFMA(LDK(KP923879532), T1j, T1i);
T1l = VFMA(LDK(KP707106781), T1a, T19);
T1m = VSUB(T16, T13);
T1n = VFNMS(LDK(KP923879532), T1m, T1l);
T1p = VFMA(LDK(KP923879532), T1m, T1l);
}
ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)]));
}
{
V TQ, TU, TT, TV;
{
V TO, TP, TR, TS;
TO = VADD(T4, T9);
TP = VADD(TI, TD);
TQ = VADD(TO, TP);
TU = VSUB(TO, TP);
TR = VADD(Tf, Tk);
TS = VADD(Tq, Tv);
TT = VADD(TR, TS);
TV = VSUB(TS, TR);
}
ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0]));
ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0]));
}
{
V T18, T1g, T1f, T1h;
{
V T10, T17, T1b, T1e;
T10 = VFMA(LDK(KP707106781), TZ, TW);
T17 = VADD(T13, T16);
T18 = VFNMS(LDK(KP923879532), T17, T10);
T1g = VFMA(LDK(KP923879532), T17, T10);
T1b = VFNMS(LDK(KP707106781), T1a, T19);
T1e = VSUB(T1c, T1d);
T1f = VFNMS(LDK(KP923879532), T1e, T1b);
T1h = VFMA(LDK(KP923879532), T1e, T1b);
}
ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
VTW(0, 5),
VTW(0, 6),
VTW(0, 7),
VTW(0, 8),
VTW(0, 9),
VTW(0, 10),
VTW(0, 11),
VTW(0, 12),
VTW(0, 13),
VTW(0, 14),
VTW(0, 15),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, { 53, 30, 34, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2fv_16) (planner *p) {
X(kdft_dit_register) (p, t2fv_16, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include dft/simd/t2f.h */
/*
* This function contains 87 FP additions, 42 FP multiplications,
* (or, 83 additions, 38 multiplications, 4 fused multiply/add),
* 36 stack variables, 3 constants, and 32 memory accesses
*/
#include "dft/simd/t2f.h"
static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
R *x;
x = ri;
for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14;
V T15, Tm, TM, TG, TI, TH;
TG = LD(&(x[0]), ms, &(x[0]));
TH = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
TI = BYTWJ(&(W[TWVL * 14]), TH);
TJ = VSUB(TG, TI);
T10 = VADD(TG, TI);
{
V TA, TC, Tz, TB;
Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
TA = BYTWJ(&(W[TWVL * 6]), Tz);
TB = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
TC = BYTWJ(&(W[TWVL * 22]), TB);
TD = VSUB(TA, TC);
T11 = VADD(TA, TC);
}
{
V Tp, Tw, Tr, Tu, Ts, Tx;
{
V To, Tv, Tq, Tt;
To = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Tp = BYTWJ(&(W[TWVL * 26]), To);
Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Tw = BYTWJ(&(W[TWVL * 18]), Tv);
Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Tr = BYTWJ(&(W[TWVL * 10]), Tq);
Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Tu = BYTWJ(&(W[TWVL * 2]), Tt);
}
T1b = VADD(Tp, Tr);
T1c = VADD(Tu, Tw);
Ts = VSUB(Tp, Tr);
Tx = VSUB(Tu, Tw);
Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));
TK = VMUL(LDK(KP707106781), VADD(Tx, Ts));
}
{
V T2, T9, T4, T7, T5, Ta;
{
V T1, T8, T3, T6;
T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
T2 = BYTWJ(&(W[TWVL * 28]), T1);
T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
T9 = BYTWJ(&(W[TWVL * 20]), T8);
T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
T4 = BYTWJ(&(W[TWVL * 12]), T3);
T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
T7 = BYTWJ(&(W[TWVL * 4]), T6);
}
T16 = VADD(T2, T4);
T17 = VADD(T7, T9);
T18 = VSUB(T16, T17);
T5 = VSUB(T2, T4);
Ta = VSUB(T7, T9);
Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5));
TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta));
}
{
V Td, Tk, Tf, Ti, Tg, Tl;
{
V Tc, Tj, Te, Th;
Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Td = BYTWJ(&(W[0]), Tc);
Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Tk = BYTWJ(&(W[TWVL * 24]), Tj);
Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Tf = BYTWJ(&(W[TWVL * 16]), Te);
Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Ti = BYTWJ(&(W[TWVL * 8]), Th);
}
T13 = VADD(Td, Tf);
T14 = VADD(Ti, Tk);
T15 = VSUB(T13, T14);
Tg = VSUB(Td, Tf);
Tl = VSUB(Ti, Tk);
Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));
TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg));
}
{
V T1a, T1g, T1f, T1h;
{
V T12, T19, T1d, T1e;
T12 = VSUB(T10, T11);
T19 = VMUL(LDK(KP707106781), VADD(T15, T18));
T1a = VADD(T12, T19);
T1g = VSUB(T12, T19);
T1d = VSUB(T1b, T1c);
T1e = VMUL(LDK(KP707106781), VSUB(T18, T15));
T1f = VBYI(VADD(T1d, T1e));
T1h = VBYI(VSUB(T1e, T1d));
}
ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0]));
ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0]));
ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0]));
ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0]));
}
{
V T1k, T1o, T1n, T1p;
{
V T1i, T1j, T1l, T1m;
T1i = VADD(T10, T11);
T1j = VADD(T1c, T1b);
T1k = VADD(T1i, T1j);
T1o = VSUB(T1i, T1j);
T1l = VADD(T13, T14);
T1m = VADD(T16, T17);
T1n = VADD(T1l, T1m);
T1p = VBYI(VSUB(T1m, T1l));
}
ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0]));
ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0]));
ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0]));
ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0]));
}
{
V TF, TQ, TP, TR;
{
V Tn, TE, TL, TO;
Tn = VSUB(Tb, Tm);
TE = VSUB(Ty, TD);
TF = VBYI(VSUB(Tn, TE));
TQ = VBYI(VADD(TE, Tn));
TL = VADD(TJ, TK);
TO = VADD(TM, TN);
TP = VSUB(TL, TO);
TR = VADD(TL, TO);
}
ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)]));
}
{
V TU, TY, TX, TZ;
{
V TS, TT, TV, TW;
TS = VSUB(TJ, TK);
TT = VADD(Tm, Tb);
TU = VADD(TS, TT);
TY = VSUB(TS, TT);
TV = VADD(TD, Ty);
TW = VSUB(TN, TM);
TX = VBYI(VADD(TV, TW));
TZ = VBYI(VSUB(TW, TV));
}
ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)]));
ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)]));
}
}
}
VLEAVE();
}
static const tw_instr twinstr[] = {
VTW(0, 1),
VTW(0, 2),
VTW(0, 3),
VTW(0, 4),
VTW(0, 5),
VTW(0, 6),
VTW(0, 7),
VTW(0, 8),
VTW(0, 9),
VTW(0, 10),
VTW(0, 11),
VTW(0, 12),
VTW(0, 13),
VTW(0, 14),
VTW(0, 15),
{ TW_NEXT, VL, 0 }
};
static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, { 83, 38, 4, 0 }, 0, 0, 0 };
void XSIMD(codelet_t2fv_16) (planner *p) {
X(kdft_dit_register) (p, t2fv_16, &desc);
}
#endif