mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-01 10:32:40 +00:00
301 lines
8.6 KiB
C
301 lines
8.6 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Do an R{E,O}DFT11 problem via an R2HC problem of the same *odd* size,
|
||
|
with some permutations and post-processing, as described in:
|
||
|
|
||
|
S. C. Chan and K. L. Ho, "Fast algorithms for computing the
|
||
|
discrete cosine transform," IEEE Trans. Circuits Systems II:
|
||
|
Analog & Digital Sig. Proc. 39 (3), 185--190 (1992).
|
||
|
|
||
|
(For even sizes, see reodft11e-radix2.c.)
|
||
|
|
||
|
This algorithm is related to the 8 x n prime-factor-algorithm (PFA)
|
||
|
decomposition of the size 8n "logical" DFT corresponding to the
|
||
|
R{EO}DFT11.
|
||
|
|
||
|
Aside from very confusing notation (several symbols are redefined
|
||
|
from one line to the next), be aware that this paper has some
|
||
|
errors. In particular, the signs are wrong in Eqs. (34-35). Also,
|
||
|
Eqs. (36-37) should be simply C(k) = C(2k + 1 mod N), and similarly
|
||
|
for S (or, equivalently, the second cases should have 2*N - 2*k - 1
|
||
|
instead of N - k - 1). Note also that in their definition of the
|
||
|
DFT, similarly to FFTW's, the exponent's sign is -1, but they
|
||
|
forgot to correspondingly multiply S (the sine terms) by -1.
|
||
|
*/
|
||
|
|
||
|
#include "reodft/reodft.h"
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_rdft super;
|
||
|
plan *cld;
|
||
|
INT is, os;
|
||
|
INT n;
|
||
|
INT vl;
|
||
|
INT ivs, ovs;
|
||
|
rdft_kind kind;
|
||
|
} P;
|
||
|
|
||
|
static DK(SQRT2, +1.4142135623730950488016887242096980785696718753769);
|
||
|
|
||
|
#define SGN_SET(x, i) ((i) % 2 ? -(x) : (x))
|
||
|
|
||
|
static void apply_re11(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
INT is = ego->is, os = ego->os;
|
||
|
INT i, n = ego->n, n2 = n/2;
|
||
|
INT iv, vl = ego->vl;
|
||
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
||
|
R *buf;
|
||
|
|
||
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
||
|
|
||
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
||
|
{
|
||
|
INT m;
|
||
|
for (i = 0, m = n2; m < n; ++i, m += 4)
|
||
|
buf[i] = I[is * m];
|
||
|
for (; m < 2 * n; ++i, m += 4)
|
||
|
buf[i] = -I[is * (2*n - m - 1)];
|
||
|
for (; m < 3 * n; ++i, m += 4)
|
||
|
buf[i] = -I[is * (m - 2*n)];
|
||
|
for (; m < 4 * n; ++i, m += 4)
|
||
|
buf[i] = I[is * (4*n - m - 1)];
|
||
|
m -= 4 * n;
|
||
|
for (; i < n; ++i, m += 4)
|
||
|
buf[i] = I[is * m];
|
||
|
}
|
||
|
|
||
|
{ /* child plan: R2HC of size n */
|
||
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
||
|
cld->apply((plan *) cld, buf, buf);
|
||
|
}
|
||
|
|
||
|
/* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
|
||
|
for (i = 0; i + i + 1 < n2; ++i) {
|
||
|
INT k = i + i + 1;
|
||
|
E c1, s1;
|
||
|
E c2, s2;
|
||
|
c1 = buf[k];
|
||
|
c2 = buf[k + 1];
|
||
|
s2 = buf[n - (k + 1)];
|
||
|
s1 = buf[n - k];
|
||
|
|
||
|
O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2) +
|
||
|
SGN_SET(s1, i/2));
|
||
|
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2) -
|
||
|
SGN_SET(s1, (n-(i+1))/2));
|
||
|
|
||
|
O[os * (n2 - (i+1))] = SQRT2 * (SGN_SET(c2, (n2-i)/2) -
|
||
|
SGN_SET(s2, (n2-(i+1))/2));
|
||
|
O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2) +
|
||
|
SGN_SET(s2, (n2+(i+1))/2));
|
||
|
}
|
||
|
if (i + i + 1 == n2) {
|
||
|
E c, s;
|
||
|
c = buf[n2];
|
||
|
s = buf[n - n2];
|
||
|
O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2) +
|
||
|
SGN_SET(s, i/2));
|
||
|
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2) +
|
||
|
SGN_SET(s, (i+1)/2));
|
||
|
}
|
||
|
O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2);
|
||
|
}
|
||
|
|
||
|
X(ifree)(buf);
|
||
|
}
|
||
|
|
||
|
/* like for rodft01, rodft11 is obtained from redft11 by
|
||
|
reversing the input and flipping the sign of every other output. */
|
||
|
static void apply_ro11(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
INT is = ego->is, os = ego->os;
|
||
|
INT i, n = ego->n, n2 = n/2;
|
||
|
INT iv, vl = ego->vl;
|
||
|
INT ivs = ego->ivs, ovs = ego->ovs;
|
||
|
R *buf;
|
||
|
|
||
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
||
|
|
||
|
for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
|
||
|
{
|
||
|
INT m;
|
||
|
for (i = 0, m = n2; m < n; ++i, m += 4)
|
||
|
buf[i] = I[is * (n - 1 - m)];
|
||
|
for (; m < 2 * n; ++i, m += 4)
|
||
|
buf[i] = -I[is * (m - n)];
|
||
|
for (; m < 3 * n; ++i, m += 4)
|
||
|
buf[i] = -I[is * (3*n - 1 - m)];
|
||
|
for (; m < 4 * n; ++i, m += 4)
|
||
|
buf[i] = I[is * (m - 3*n)];
|
||
|
m -= 4 * n;
|
||
|
for (; i < n; ++i, m += 4)
|
||
|
buf[i] = I[is * (n - 1 - m)];
|
||
|
}
|
||
|
|
||
|
{ /* child plan: R2HC of size n */
|
||
|
plan_rdft *cld = (plan_rdft *) ego->cld;
|
||
|
cld->apply((plan *) cld, buf, buf);
|
||
|
}
|
||
|
|
||
|
/* FIXME: strength-reduce loop by 4 to eliminate ugly sgn_set? */
|
||
|
for (i = 0; i + i + 1 < n2; ++i) {
|
||
|
INT k = i + i + 1;
|
||
|
INT j;
|
||
|
E c1, s1;
|
||
|
E c2, s2;
|
||
|
c1 = buf[k];
|
||
|
c2 = buf[k + 1];
|
||
|
s2 = buf[n - (k + 1)];
|
||
|
s1 = buf[n - k];
|
||
|
|
||
|
O[os * i] = SQRT2 * (SGN_SET(c1, (i+1)/2 + i) +
|
||
|
SGN_SET(s1, i/2 + i));
|
||
|
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c1, (n-i)/2 + i) -
|
||
|
SGN_SET(s1, (n-(i+1))/2 + i));
|
||
|
|
||
|
j = n2 - (i+1);
|
||
|
O[os * j] = SQRT2 * (SGN_SET(c2, (n2-i)/2 + j) -
|
||
|
SGN_SET(s2, (n2-(i+1))/2 + j));
|
||
|
O[os * (n2 + (i+1))] = SQRT2 * (SGN_SET(c2, (n2+i+2)/2 + j) +
|
||
|
SGN_SET(s2, (n2+(i+1))/2 + j));
|
||
|
}
|
||
|
if (i + i + 1 == n2) {
|
||
|
E c, s;
|
||
|
c = buf[n2];
|
||
|
s = buf[n - n2];
|
||
|
O[os * i] = SQRT2 * (SGN_SET(c, (i+1)/2 + i) +
|
||
|
SGN_SET(s, i/2 + i));
|
||
|
O[os * (n - (i+1))] = SQRT2 * (SGN_SET(c, (i+2)/2 + i) +
|
||
|
SGN_SET(s, (i+1)/2 + i));
|
||
|
}
|
||
|
O[os * n2] = SQRT2 * SGN_SET(buf[0], (n2+1)/2 + n2);
|
||
|
}
|
||
|
|
||
|
X(ifree)(buf);
|
||
|
}
|
||
|
|
||
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_awake)(ego->cld, wakefulness);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_destroy_internal)(ego->cld);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
p->print(p, "(%se-r2hc-odd-%D%v%(%p%))",
|
||
|
X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
|
||
|
}
|
||
|
|
||
|
static int applicable0(const solver *ego_, const problem *p_)
|
||
|
{
|
||
|
const problem_rdft *p = (const problem_rdft *) p_;
|
||
|
UNUSED(ego_);
|
||
|
|
||
|
return (1
|
||
|
&& p->sz->rnk == 1
|
||
|
&& p->vecsz->rnk <= 1
|
||
|
&& p->sz->dims[0].n % 2 == 1
|
||
|
&& (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
static int applicable(const solver *ego, const problem *p, const planner *plnr)
|
||
|
{
|
||
|
return (!NO_SLOWP(plnr) && applicable0(ego, p));
|
||
|
}
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
P *pln;
|
||
|
const problem_rdft *p;
|
||
|
plan *cld;
|
||
|
R *buf;
|
||
|
INT n;
|
||
|
opcnt ops;
|
||
|
|
||
|
static const plan_adt padt = {
|
||
|
X(rdft_solve), awake, print, destroy
|
||
|
};
|
||
|
|
||
|
if (!applicable(ego_, p_, plnr))
|
||
|
return (plan *)0;
|
||
|
|
||
|
p = (const problem_rdft *) p_;
|
||
|
|
||
|
n = p->sz->dims[0].n;
|
||
|
buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
|
||
|
|
||
|
cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
|
||
|
X(mktensor_0d)(),
|
||
|
buf, buf, R2HC));
|
||
|
X(ifree)(buf);
|
||
|
if (!cld)
|
||
|
return (plan *)0;
|
||
|
|
||
|
pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
|
||
|
pln->n = n;
|
||
|
pln->is = p->sz->dims[0].is;
|
||
|
pln->os = p->sz->dims[0].os;
|
||
|
pln->cld = cld;
|
||
|
pln->kind = p->kind[0];
|
||
|
|
||
|
X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
||
|
|
||
|
X(ops_zero)(&ops);
|
||
|
ops.add = n - 1;
|
||
|
ops.mul = n;
|
||
|
ops.other = 4*n;
|
||
|
|
||
|
X(ops_zero)(&pln->super.super.ops);
|
||
|
X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
|
||
|
X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
|
||
|
|
||
|
return &(pln->super.super);
|
||
|
}
|
||
|
|
||
|
/* constructor */
|
||
|
static solver *mksolver(void)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
void X(reodft11e_r2hc_odd_register)(planner *p)
|
||
|
{
|
||
|
REGISTER_SOLVER(p, mksolver());
|
||
|
}
|