furnace/extern/fftw/dft/scalar/codelets/t2_64.c

4244 lines
116 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:33 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */
/*
* This function contains 1154 FP additions, 840 FP multiplications,
* (or, 520 additions, 206 multiplications, 634 fused multiply/add),
* 316 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP098491403, +0.098491403357164253077197521291327432293052451);
DK(KP820678790, +0.820678790828660330972281985331011598767386482);
DK(KP303346683, +0.303346683607342391675883946941299872384187453);
DK(KP534511135, +0.534511135950791641089685961295362908582039528);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP198912367, +0.198912367379658006911597622644676228597850501);
DK(KP668178637, +0.668178637919298919997757686523080761552472251);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
{
INT m;
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) {
E T2, T3, Tc, T8, Te, T5, T6, Tr, T7, TJ, T14, T3d, T3i, TG, T10;
E T3a, T3g, TL, TP, Tb, Td, T17, Tt, Tu, T1i, Ti, T2U, T1t, T7B, T5O;
E T3N, T3U, T1I, T3G, T3R, T79, T1x, T3D, T2l, T3X, T2d, T1M, T4B, T4x, T4T;
E T2h, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a, T6e, T7l, T60, T7R, T5A;
E T6h, T6J, T7o, T5E, T6k, T6N, T7r, T2X, T6t, T6x, TO, TK, TQ, T7c, TU;
E T2x, T2u, T2y, T7E, T2C, T4b, T48, T4c, T5R, T4g, T3m, T3j, T3n, T4W, T3r;
E Tx, Ty, TC, T1Z, T23, T4s, T4p, T70, T6W, T19, T41, T44, T1a, T1e, T35;
E T31, T59, T55, T1k, T1R, T1V, T1l, T1p, T2Q, T2N, T8i, T8e, Th, T4E, T4H;
E Tj, Tn, T3A, T3w, T5n, T5j;
{
E T1H, Tg, Tw, T1s, T2g, TH, T2t, T47, T3h, T28, T4w, T3M, T2c, T4A, T3Q;
E T1w, T2k, T1L, T5r, T80;
{
E TI, T13, TF, TZ, Ta, T4, T9, Ts;
T2 = W[0];
T3 = W[2];
T4 = T2 * T3;
Tc = W[5];
TI = T3 * Tc;
T13 = T2 * Tc;
T8 = W[4];
Te = W[6];
TF = T3 * T8;
T1H = T8 * Te;
TZ = T2 * T8;
T5 = W[1];
T6 = W[3];
Ta = T2 * T6;
Tr = FMA(T5, T6, T4);
T7 = FNMS(T5, T6, T4);
Tg = T7 * Tc;
Tw = Tr * Tc;
T1s = T3 * Te;
T2g = T2 * Te;
TJ = FMA(T6, T8, TI);
T14 = FNMS(T5, T8, T13);
T3d = FMA(T5, T8, T13);
T3i = FNMS(T6, T8, TI);
TG = FNMS(T6, Tc, TF);
TH = TG * Te;
T10 = FMA(T5, Tc, TZ);
T2t = T10 * Te;
T3a = FNMS(T5, Tc, TZ);
T47 = T3a * Te;
T3g = FMA(T6, Tc, TF);
T3h = T3g * Te;
TL = W[8];
T28 = T3 * TL;
T4w = T8 * TL;
T3M = T2 * TL;
TP = W[9];
T2c = T3 * TP;
T4A = T8 * TP;
T3Q = T2 * TP;
T9 = T7 * T8;
Tb = FMA(T5, T3, Ta);
Td = FMA(Tb, Tc, T9);
T17 = FNMS(Tb, Tc, T9);
Ts = Tr * T8;
Tt = FNMS(T5, T3, Ta);
Tu = FNMS(Tt, Tc, Ts);
T1i = FMA(Tt, Tc, Ts);
Ti = W[7];
T1w = T3 * Ti;
T2k = T2 * Ti;
T1L = T8 * Ti;
T2U = FMA(Tc, Ti, T1H);
}
T1t = FMA(T6, Ti, T1s);
T7B = FNMS(T14, Ti, T2t);
T5O = FNMS(T3d, Ti, T47);
T3N = FMA(T5, TP, T3M);
T3U = FNMS(T6, Ti, T1s);
T1I = FNMS(Tc, Ti, T1H);
T3G = FNMS(T5, Te, T2k);
T3R = FNMS(T5, TL, T3Q);
T79 = FNMS(TJ, Ti, TH);
T1x = FNMS(T6, Te, T1w);
T3D = FMA(T5, Ti, T2g);
T2l = FMA(T5, Te, T2k);
T3X = FMA(T6, Te, T1w);
T2d = FNMS(T6, TL, T2c);
T1M = FMA(Tc, Te, T1L);
T4B = FNMS(Tc, TL, T4A);
T4x = FMA(Tc, TP, T4w);
T4T = FNMS(T3i, Ti, T3h);
T2h = FNMS(T5, Ti, T2g);
T29 = FMA(T6, TP, T28);
T5r = T3g * TL;
T5s = FMA(T3i, TP, T5r);
T80 = T7 * TP;
T81 = FNMS(Tb, TL, T80);
{
E T5v, T7W, T7M, T7g, T63;
T5v = T3g * TP;
T5w = FNMS(T3i, TL, T5v);
T7W = T7 * TL;
T7X = FMA(Tb, TP, T7W);
T7M = TG * TL;
T7N = FMA(TJ, TP, T7M);
T7g = T10 * TL;
T7h = FMA(T14, TP, T7g);
T63 = T3a * TP;
T64 = FNMS(T3d, TL, T63);
}
{
E T69, T6d, T7k, T5Z, T7Q, T5z;
T69 = Tr * TL;
T6a = FMA(Tt, TP, T69);
T6d = Tr * TP;
T6e = FNMS(Tt, TL, T6d);
T7k = T10 * TP;
T7l = FNMS(T14, TL, T7k);
T5Z = T3a * TL;
T60 = FMA(T3d, TP, T5Z);
T7Q = TG * TP;
T7R = FNMS(TJ, TL, T7Q);
T5z = Tr * Te;
T5A = FMA(Tt, Ti, T5z);
T6h = FNMS(Tt, Ti, T5z);
}
{
E T6I, T5D, T6M, T6s, T6w;
T6I = T7 * Te;
T6J = FNMS(Tb, Ti, T6I);
T7o = FMA(Tb, Ti, T6I);
T5D = Tr * Ti;
T5E = FNMS(Tt, Te, T5D);
T6k = FMA(Tt, Te, T5D);
T6M = T7 * Ti;
T6N = FMA(Tb, Te, T6M);
T7r = FNMS(Tb, Te, T6M);
T6s = T2U * TL;
T6w = T2U * TP;
T2X = FNMS(Tc, Te, T1L);
T6t = FMA(T2X, TP, T6s);
T6x = FNMS(T2X, TL, T6w);
{
E TN, TM, TT, T2w, T2v, T2B;
TN = TG * Ti;
TO = FNMS(TJ, Te, TN);
TK = FMA(TJ, Ti, TH);
TM = TK * TL;
TT = TK * TP;
TQ = FMA(TO, TP, TM);
T7c = FMA(TJ, Te, TN);
TU = FNMS(TO, TL, TT);
T2w = T10 * Ti;
T2x = FNMS(T14, Te, T2w);
T2u = FMA(T14, Ti, T2t);
T2v = T2u * TL;
T2B = T2u * TP;
T2y = FMA(T2x, TP, T2v);
T7E = FMA(T14, Te, T2w);
T2C = FNMS(T2x, TL, T2B);
}
}
{
E T4a, T49, T4f, T3l, T3k, T3q;
T4a = T3a * Ti;
T4b = FNMS(T3d, Te, T4a);
T48 = FMA(T3d, Ti, T47);
T49 = T48 * TL;
T4f = T48 * TP;
T4c = FMA(T4b, TP, T49);
T5R = FMA(T3d, Te, T4a);
T4g = FNMS(T4b, TL, T4f);
T3l = T3g * Ti;
T3m = FNMS(T3i, Te, T3l);
T3j = FMA(T3i, Ti, T3h);
T3k = T3j * TL;
T3q = T3j * TP;
T3n = FMA(T3m, TP, T3k);
T4W = FMA(T3i, Te, T3l);
T3r = FNMS(T3m, TL, T3q);
{
E T1Y, T22, Tv, TB, T6Z, T6V;
T1Y = Tu * TL;
T22 = Tu * TP;
Tv = Tu * Te;
TB = Tu * Ti;
Tx = FMA(Tt, T8, Tw);
Ty = FMA(Tx, Ti, Tv);
TC = FNMS(Tx, Te, TB);
T1Z = FMA(Tx, TP, T1Y);
T23 = FNMS(Tx, TL, T22);
T4s = FMA(Tx, Te, TB);
T4p = FNMS(Tx, Ti, Tv);
T6Z = Ty * TP;
T70 = FNMS(TC, TL, T6Z);
T6V = Ty * TL;
T6W = FMA(TC, TP, T6V);
}
}
{
E T30, T34, T18, T1d, T58, T54;
T30 = T17 * TL;
T34 = T17 * TP;
T18 = T17 * Te;
T1d = T17 * Ti;
T19 = FMA(Tb, T8, Tg);
T41 = FMA(T19, Ti, T18);
T44 = FNMS(T19, Te, T1d);
T1a = FNMS(T19, Ti, T18);
T1e = FMA(T19, Te, T1d);
T35 = FNMS(T19, TL, T34);
T31 = FMA(T19, TP, T30);
T58 = T41 * TP;
T59 = FNMS(T44, TL, T58);
T54 = T41 * TL;
T55 = FMA(T44, TP, T54);
}
{
E T1j, T1o, T1Q, T1U, T8h, T8d;
T1j = T1i * TL;
T1o = T1i * TP;
T1Q = T1i * Te;
T1U = T1i * Ti;
T1k = FNMS(Tt, T8, Tw);
T1R = FMA(T1k, Ti, T1Q);
T1V = FNMS(T1k, Te, T1U);
T1l = FMA(T1k, TP, T1j);
T1p = FNMS(T1k, TL, T1o);
T2Q = FMA(T1k, Te, T1U);
T2N = FNMS(T1k, Ti, T1Q);
T8h = T1R * TP;
T8i = FNMS(T1V, TL, T8h);
T8d = T1R * TL;
T8e = FMA(T1V, TP, T8d);
}
{
E T3v, T3z, Tf, Tm, T5m, T5i;
T3v = Td * TL;
T3z = Td * TP;
Tf = Td * Te;
Tm = Td * Ti;
Th = FNMS(Tb, T8, Tg);
T4E = FMA(Th, Ti, Tf);
T4H = FNMS(Th, Te, Tm);
Tj = FNMS(Th, Ti, Tf);
Tn = FMA(Th, Te, Tm);
T3A = FNMS(Th, TL, T3z);
T3w = FMA(Th, TP, T3v);
T5m = T4E * TP;
T5n = FNMS(T4H, TL, T5m);
T5i = T4E * TL;
T5j = FMA(T4H, TP, T5i);
}
}
{
E TY, Tg4, Tl9, TlD, T8w, TdS, Tkd, TkE, T2G, Tge, Tgh, TiK, T98, Te1, T9f;
E Te0, T39, Tgq, Tgn, TiN, T9p, Te5, T9M, Te8, T74, Thr, Thc, Tja, TbI, TeE;
E TcB, TeP, T1B, TkD, Tg7, Tk7, T8D, TdT, T8K, TdU, T27, Tg9, Tgc, TiJ, T8T;
E TdY, T90, TdX, T4k, TgB, Tgy, TiT, T9Y, Tec, Tal, Tef, T5d, Th0, TgL, TiZ;
E Taz, Tel, Tbs, Tew, T3K, Tgo, Tgt, TiO, T9E, Te9, T9P, Te6, T4L, Tgz, TgE;
E TiU, Tad, Teg, Tao, Ted, T5I, TgM, Th3, Tj0, TaO, Tex, Tbv, Tem, T7v, Thd;
E Thu, Tjb, TbX, TeQ, TcE, TeF, T68, Tj5, TgS, Th5, Tbj, Tez, Tbx, Teq, T6B;
E Tj6, TgX, Th6, Tb4, TeA, Tby, Tet, T7V, Tjg, Thj, Thw, Tcs, TeS, TcG, TeJ;
E T8m, Tjh, Tho, Thx, Tcd, TeT, TcH, TeM;
{
E T1, Tkb, Tp, Tka, TE, T8s, TW, T8u;
T1 = ri[0];
Tkb = ii[0];
{
E Tk, Tl, To, Tk9;
Tk = ri[WS(rs, 32)];
Tl = Tj * Tk;
To = ii[WS(rs, 32)];
Tk9 = Tj * To;
Tp = FMA(Tn, To, Tl);
Tka = FNMS(Tn, Tk, Tk9);
}
{
E Tz, TA, TD, T8r;
Tz = ri[WS(rs, 16)];
TA = Ty * Tz;
TD = ii[WS(rs, 16)];
T8r = Ty * TD;
TE = FMA(TC, TD, TA);
T8s = FNMS(TC, Tz, T8r);
}
{
E TR, TS, TV, T8t;
TR = ri[WS(rs, 48)];
TS = TQ * TR;
TV = ii[WS(rs, 48)];
T8t = TQ * TV;
TW = FMA(TU, TV, TS);
T8u = FNMS(TU, TR, T8t);
}
{
E Tq, TX, Tl7, Tl8;
Tq = T1 + Tp;
TX = TE + TW;
TY = Tq + TX;
Tg4 = Tq - TX;
Tl7 = Tkb - Tka;
Tl8 = TE - TW;
Tl9 = Tl7 - Tl8;
TlD = Tl8 + Tl7;
}
{
E T8q, T8v, Tk8, Tkc;
T8q = T1 - Tp;
T8v = T8s - T8u;
T8w = T8q - T8v;
TdS = T8q + T8v;
Tk8 = T8s + T8u;
Tkc = Tka + Tkb;
Tkd = Tk8 + Tkc;
TkE = Tkc - Tk8;
}
}
{
E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b;
{
E T2a, T2b, T2e, T92;
T2a = ri[WS(rs, 60)];
T2b = T29 * T2a;
T2e = ii[WS(rs, 60)];
T92 = T29 * T2e;
T2f = FMA(T2d, T2e, T2b);
T93 = FNMS(T2d, T2a, T92);
}
{
E T2z, T2A, T2D, T9c;
T2z = ri[WS(rs, 44)];
T2A = T2y * T2z;
T2D = ii[WS(rs, 44)];
T9c = T2y * T2D;
T2E = FMA(T2C, T2D, T2A);
T9d = FNMS(T2C, T2z, T9c);
}
{
E T2i, T2j, T2m, T94;
T2i = ri[WS(rs, 28)];
T2j = T2h * T2i;
T2m = ii[WS(rs, 28)];
T94 = T2h * T2m;
T2n = FMA(T2l, T2m, T2j);
T95 = FNMS(T2l, T2i, T94);
}
{
E T2p, T2q, T2r, T9a;
T2p = ri[WS(rs, 12)];
T2q = TG * T2p;
T2r = ii[WS(rs, 12)];
T9a = TG * T2r;
T2s = FMA(TJ, T2r, T2q);
T9b = FNMS(TJ, T2p, T9a);
}
{
E T2o, T2F, Tgf, Tgg;
T2o = T2f + T2n;
T2F = T2s + T2E;
T2G = T2o + T2F;
Tge = T2o - T2F;
Tgf = T93 + T95;
Tgg = T9b + T9d;
Tgh = Tgf - Tgg;
TiK = Tgf + Tgg;
}
{
E T96, T97, T99, T9e;
T96 = T93 - T95;
T97 = T2s - T2E;
T98 = T96 + T97;
Te1 = T96 - T97;
T99 = T2f - T2n;
T9e = T9b - T9d;
T9f = T99 - T9e;
Te0 = T99 + T9e;
}
}
{
E T2M, T9k, T37, T9K, T2S, T9m, T2Z, T9I;
{
E T2J, T2K, T2L, T9j;
T2J = ri[WS(rs, 2)];
T2K = Tr * T2J;
T2L = ii[WS(rs, 2)];
T9j = Tr * T2L;
T2M = FMA(Tt, T2L, T2K);
T9k = FNMS(Tt, T2J, T9j);
}
{
E T32, T33, T36, T9J;
T32 = ri[WS(rs, 50)];
T33 = T31 * T32;
T36 = ii[WS(rs, 50)];
T9J = T31 * T36;
T37 = FMA(T35, T36, T33);
T9K = FNMS(T35, T32, T9J);
}
{
E T2O, T2P, T2R, T9l;
T2O = ri[WS(rs, 34)];
T2P = T2N * T2O;
T2R = ii[WS(rs, 34)];
T9l = T2N * T2R;
T2S = FMA(T2Q, T2R, T2P);
T9m = FNMS(T2Q, T2O, T9l);
}
{
E T2V, T2W, T2Y, T9H;
T2V = ri[WS(rs, 18)];
T2W = T2U * T2V;
T2Y = ii[WS(rs, 18)];
T9H = T2U * T2Y;
T2Z = FMA(T2X, T2Y, T2W);
T9I = FNMS(T2X, T2V, T9H);
}
{
E T2T, T38, Tgl, Tgm;
T2T = T2M + T2S;
T38 = T2Z + T37;
T39 = T2T + T38;
Tgq = T2T - T38;
Tgl = T9k + T9m;
Tgm = T9I + T9K;
Tgn = Tgl - Tgm;
TiN = Tgl + Tgm;
}
{
E T9n, T9o, T9G, T9L;
T9n = T9k - T9m;
T9o = T2Z - T37;
T9p = T9n + T9o;
Te5 = T9n - T9o;
T9G = T2M - T2S;
T9L = T9I - T9K;
T9M = T9G - T9L;
Te8 = T9G + T9L;
}
}
{
E T6H, TbD, T72, Tcz, T6P, TbF, T6U, Tcx;
{
E T6E, T6F, T6G, TbC;
T6E = ri[WS(rs, 63)];
T6F = TL * T6E;
T6G = ii[WS(rs, 63)];
TbC = TL * T6G;
T6H = FMA(TP, T6G, T6F);
TbD = FNMS(TP, T6E, TbC);
}
{
E T6X, T6Y, T71, Tcy;
T6X = ri[WS(rs, 47)];
T6Y = T6W * T6X;
T71 = ii[WS(rs, 47)];
Tcy = T6W * T71;
T72 = FMA(T70, T71, T6Y);
Tcz = FNMS(T70, T6X, Tcy);
}
{
E T6K, T6L, T6O, TbE;
T6K = ri[WS(rs, 31)];
T6L = T6J * T6K;
T6O = ii[WS(rs, 31)];
TbE = T6J * T6O;
T6P = FMA(T6N, T6O, T6L);
TbF = FNMS(T6N, T6K, TbE);
}
{
E T6R, T6S, T6T, Tcw;
T6R = ri[WS(rs, 15)];
T6S = TK * T6R;
T6T = ii[WS(rs, 15)];
Tcw = TK * T6T;
T6U = FMA(TO, T6T, T6S);
Tcx = FNMS(TO, T6R, Tcw);
}
{
E T6Q, T73, Tha, Thb;
T6Q = T6H + T6P;
T73 = T6U + T72;
T74 = T6Q + T73;
Thr = T6Q - T73;
Tha = TbD + TbF;
Thb = Tcx + Tcz;
Thc = Tha - Thb;
Tja = Tha + Thb;
}
{
E TbG, TbH, Tcv, TcA;
TbG = TbD - TbF;
TbH = T6U - T72;
TbI = TbG + TbH;
TeE = TbG - TbH;
Tcv = T6H - T6P;
TcA = Tcx - Tcz;
TcB = Tcv - TcA;
TeP = Tcv + TcA;
}
}
{
E T16, T8y, T1z, T8I, T1g, T8A, T1r, T8G;
{
E T11, T12, T15, T8x;
T11 = ri[WS(rs, 8)];
T12 = T10 * T11;
T15 = ii[WS(rs, 8)];
T8x = T10 * T15;
T16 = FMA(T14, T15, T12);
T8y = FNMS(T14, T11, T8x);
}
{
E T1u, T1v, T1y, T8H;
T1u = ri[WS(rs, 24)];
T1v = T1t * T1u;
T1y = ii[WS(rs, 24)];
T8H = T1t * T1y;
T1z = FMA(T1x, T1y, T1v);
T8I = FNMS(T1x, T1u, T8H);
}
{
E T1b, T1c, T1f, T8z;
T1b = ri[WS(rs, 40)];
T1c = T1a * T1b;
T1f = ii[WS(rs, 40)];
T8z = T1a * T1f;
T1g = FMA(T1e, T1f, T1c);
T8A = FNMS(T1e, T1b, T8z);
}
{
E T1m, T1n, T1q, T8F;
T1m = ri[WS(rs, 56)];
T1n = T1l * T1m;
T1q = ii[WS(rs, 56)];
T8F = T1l * T1q;
T1r = FMA(T1p, T1q, T1n);
T8G = FNMS(T1p, T1m, T8F);
}
{
E T1h, T1A, Tg5, Tg6;
T1h = T16 + T1g;
T1A = T1r + T1z;
T1B = T1h + T1A;
TkD = T1A - T1h;
Tg5 = T8y + T8A;
Tg6 = T8G + T8I;
Tg7 = Tg5 - Tg6;
Tk7 = Tg5 + Tg6;
}
{
E T8B, T8C, T8E, T8J;
T8B = T8y - T8A;
T8C = T16 - T1g;
T8D = T8B - T8C;
TdT = T8C + T8B;
T8E = T1r - T1z;
T8J = T8G - T8I;
T8K = T8E + T8J;
TdU = T8E - T8J;
}
}
{
E T1G, T8O, T25, T8Y, T1O, T8Q, T1X, T8W;
{
E T1D, T1E, T1F, T8N;
T1D = ri[WS(rs, 4)];
T1E = T7 * T1D;
T1F = ii[WS(rs, 4)];
T8N = T7 * T1F;
T1G = FMA(Tb, T1F, T1E);
T8O = FNMS(Tb, T1D, T8N);
}
{
E T20, T21, T24, T8X;
T20 = ri[WS(rs, 52)];
T21 = T1Z * T20;
T24 = ii[WS(rs, 52)];
T8X = T1Z * T24;
T25 = FMA(T23, T24, T21);
T8Y = FNMS(T23, T20, T8X);
}
{
E T1J, T1K, T1N, T8P;
T1J = ri[WS(rs, 36)];
T1K = T1I * T1J;
T1N = ii[WS(rs, 36)];
T8P = T1I * T1N;
T1O = FMA(T1M, T1N, T1K);
T8Q = FNMS(T1M, T1J, T8P);
}
{
E T1S, T1T, T1W, T8V;
T1S = ri[WS(rs, 20)];
T1T = T1R * T1S;
T1W = ii[WS(rs, 20)];
T8V = T1R * T1W;
T1X = FMA(T1V, T1W, T1T);
T8W = FNMS(T1V, T1S, T8V);
}
{
E T1P, T26, Tga, Tgb;
T1P = T1G + T1O;
T26 = T1X + T25;
T27 = T1P + T26;
Tg9 = T1P - T26;
Tga = T8O + T8Q;
Tgb = T8W + T8Y;
Tgc = Tga - Tgb;
TiJ = Tga + Tgb;
}
{
E T8R, T8S, T8U, T8Z;
T8R = T8O - T8Q;
T8S = T1X - T25;
T8T = T8R + T8S;
TdY = T8R - T8S;
T8U = T1G - T1O;
T8Z = T8W - T8Y;
T90 = T8U - T8Z;
TdX = T8U + T8Z;
}
}
{
E T3T, T9T, T4i, Taj, T3Z, T9V, T46, Tah;
{
E T3O, T3P, T3S, T9S;
T3O = ri[WS(rs, 62)];
T3P = T3N * T3O;
T3S = ii[WS(rs, 62)];
T9S = T3N * T3S;
T3T = FMA(T3R, T3S, T3P);
T9T = FNMS(T3R, T3O, T9S);
}
{
E T4d, T4e, T4h, Tai;
T4d = ri[WS(rs, 46)];
T4e = T4c * T4d;
T4h = ii[WS(rs, 46)];
Tai = T4c * T4h;
T4i = FMA(T4g, T4h, T4e);
Taj = FNMS(T4g, T4d, Tai);
}
{
E T3V, T3W, T3Y, T9U;
T3V = ri[WS(rs, 30)];
T3W = T3U * T3V;
T3Y = ii[WS(rs, 30)];
T9U = T3U * T3Y;
T3Z = FMA(T3X, T3Y, T3W);
T9V = FNMS(T3X, T3V, T9U);
}
{
E T42, T43, T45, Tag;
T42 = ri[WS(rs, 14)];
T43 = T41 * T42;
T45 = ii[WS(rs, 14)];
Tag = T41 * T45;
T46 = FMA(T44, T45, T43);
Tah = FNMS(T44, T42, Tag);
}
{
E T40, T4j, Tgw, Tgx;
T40 = T3T + T3Z;
T4j = T46 + T4i;
T4k = T40 + T4j;
TgB = T40 - T4j;
Tgw = T9T + T9V;
Tgx = Tah + Taj;
Tgy = Tgw - Tgx;
TiT = Tgw + Tgx;
}
{
E T9W, T9X, Taf, Tak;
T9W = T9T - T9V;
T9X = T46 - T4i;
T9Y = T9W + T9X;
Tec = T9W - T9X;
Taf = T3T - T3Z;
Tak = Tah - Taj;
Tal = Taf - Tak;
Tef = Taf + Tak;
}
}
{
E T4S, Tau, T5b, Tbq, T4Y, Taw, T53, Tbo;
{
E T4P, T4Q, T4R, Tat;
T4P = ri[WS(rs, 1)];
T4Q = T2 * T4P;
T4R = ii[WS(rs, 1)];
Tat = T2 * T4R;
T4S = FMA(T5, T4R, T4Q);
Tau = FNMS(T5, T4P, Tat);
}
{
E T56, T57, T5a, Tbp;
T56 = ri[WS(rs, 49)];
T57 = T55 * T56;
T5a = ii[WS(rs, 49)];
Tbp = T55 * T5a;
T5b = FMA(T59, T5a, T57);
Tbq = FNMS(T59, T56, Tbp);
}
{
E T4U, T4V, T4X, Tav;
T4U = ri[WS(rs, 33)];
T4V = T4T * T4U;
T4X = ii[WS(rs, 33)];
Tav = T4T * T4X;
T4Y = FMA(T4W, T4X, T4V);
Taw = FNMS(T4W, T4U, Tav);
}
{
E T50, T51, T52, Tbn;
T50 = ri[WS(rs, 17)];
T51 = T48 * T50;
T52 = ii[WS(rs, 17)];
Tbn = T48 * T52;
T53 = FMA(T4b, T52, T51);
Tbo = FNMS(T4b, T50, Tbn);
}
{
E T4Z, T5c, TgJ, TgK;
T4Z = T4S + T4Y;
T5c = T53 + T5b;
T5d = T4Z + T5c;
Th0 = T4Z - T5c;
TgJ = Tau + Taw;
TgK = Tbo + Tbq;
TgL = TgJ - TgK;
TiZ = TgJ + TgK;
}
{
E Tax, Tay, Tbm, Tbr;
Tax = Tau - Taw;
Tay = T53 - T5b;
Taz = Tax + Tay;
Tel = Tax - Tay;
Tbm = T4S - T4Y;
Tbr = Tbo - Tbq;
Tbs = Tbm - Tbr;
Tew = Tbm + Tbr;
}
}
{
E T3f, T9s, T3I, T9B, T3t, T9u, T3C, T9z;
{
E T3b, T3c, T3e, T9r;
T3b = ri[WS(rs, 10)];
T3c = T3a * T3b;
T3e = ii[WS(rs, 10)];
T9r = T3a * T3e;
T3f = FMA(T3d, T3e, T3c);
T9s = FNMS(T3d, T3b, T9r);
}
{
E T3E, T3F, T3H, T9A;
T3E = ri[WS(rs, 26)];
T3F = T3D * T3E;
T3H = ii[WS(rs, 26)];
T9A = T3D * T3H;
T3I = FMA(T3G, T3H, T3F);
T9B = FNMS(T3G, T3E, T9A);
}
{
E T3o, T3p, T3s, T9t;
T3o = ri[WS(rs, 42)];
T3p = T3n * T3o;
T3s = ii[WS(rs, 42)];
T9t = T3n * T3s;
T3t = FMA(T3r, T3s, T3p);
T9u = FNMS(T3r, T3o, T9t);
}
{
E T3x, T3y, T3B, T9y;
T3x = ri[WS(rs, 58)];
T3y = T3w * T3x;
T3B = ii[WS(rs, 58)];
T9y = T3w * T3B;
T3C = FMA(T3A, T3B, T3y);
T9z = FNMS(T3A, T3x, T9y);
}
{
E T3u, T3J, Tgr, Tgs;
T3u = T3f + T3t;
T3J = T3C + T3I;
T3K = T3u + T3J;
Tgo = T3J - T3u;
Tgr = T9s + T9u;
Tgs = T9z + T9B;
Tgt = Tgr - Tgs;
TiO = Tgr + Tgs;
{
E T9w, T9O, T9D, T9N;
{
E T9q, T9v, T9x, T9C;
T9q = T3f - T3t;
T9v = T9s - T9u;
T9w = T9q + T9v;
T9O = T9v - T9q;
T9x = T3C - T3I;
T9C = T9z - T9B;
T9D = T9x - T9C;
T9N = T9x + T9C;
}
T9E = T9w - T9D;
Te9 = T9w + T9D;
T9P = T9N - T9O;
Te6 = T9O + T9N;
}
}
}
{
E T4o, Ta1, T4J, Taa, T4u, Ta3, T4D, Ta8;
{
E T4l, T4m, T4n, Ta0;
T4l = ri[WS(rs, 6)];
T4m = T3g * T4l;
T4n = ii[WS(rs, 6)];
Ta0 = T3g * T4n;
T4o = FMA(T3i, T4n, T4m);
Ta1 = FNMS(T3i, T4l, Ta0);
}
{
E T4F, T4G, T4I, Ta9;
T4F = ri[WS(rs, 22)];
T4G = T4E * T4F;
T4I = ii[WS(rs, 22)];
Ta9 = T4E * T4I;
T4J = FMA(T4H, T4I, T4G);
Taa = FNMS(T4H, T4F, Ta9);
}
{
E T4q, T4r, T4t, Ta2;
T4q = ri[WS(rs, 38)];
T4r = T4p * T4q;
T4t = ii[WS(rs, 38)];
Ta2 = T4p * T4t;
T4u = FMA(T4s, T4t, T4r);
Ta3 = FNMS(T4s, T4q, Ta2);
}
{
E T4y, T4z, T4C, Ta7;
T4y = ri[WS(rs, 54)];
T4z = T4x * T4y;
T4C = ii[WS(rs, 54)];
Ta7 = T4x * T4C;
T4D = FMA(T4B, T4C, T4z);
Ta8 = FNMS(T4B, T4y, Ta7);
}
{
E T4v, T4K, TgC, TgD;
T4v = T4o + T4u;
T4K = T4D + T4J;
T4L = T4v + T4K;
Tgz = T4K - T4v;
TgC = Ta1 + Ta3;
TgD = Ta8 + Taa;
TgE = TgC - TgD;
TiU = TgC + TgD;
{
E Ta5, Tan, Tac, Tam;
{
E T9Z, Ta4, Ta6, Tab;
T9Z = T4o - T4u;
Ta4 = Ta1 - Ta3;
Ta5 = T9Z + Ta4;
Tan = Ta4 - T9Z;
Ta6 = T4D - T4J;
Tab = Ta8 - Taa;
Tac = Ta6 - Tab;
Tam = Ta6 + Tab;
}
Tad = Ta5 - Tac;
Teg = Ta5 + Tac;
Tao = Tam - Tan;
Ted = Tan + Tam;
}
}
}
{
E T5h, TaC, T5G, TaL, T5p, TaE, T5y, TaJ;
{
E T5e, T5f, T5g, TaB;
T5e = ri[WS(rs, 9)];
T5f = T8 * T5e;
T5g = ii[WS(rs, 9)];
TaB = T8 * T5g;
T5h = FMA(Tc, T5g, T5f);
TaC = FNMS(Tc, T5e, TaB);
}
{
E T5B, T5C, T5F, TaK;
T5B = ri[WS(rs, 25)];
T5C = T5A * T5B;
T5F = ii[WS(rs, 25)];
TaK = T5A * T5F;
T5G = FMA(T5E, T5F, T5C);
TaL = FNMS(T5E, T5B, TaK);
}
{
E T5k, T5l, T5o, TaD;
T5k = ri[WS(rs, 41)];
T5l = T5j * T5k;
T5o = ii[WS(rs, 41)];
TaD = T5j * T5o;
T5p = FMA(T5n, T5o, T5l);
TaE = FNMS(T5n, T5k, TaD);
}
{
E T5t, T5u, T5x, TaI;
T5t = ri[WS(rs, 57)];
T5u = T5s * T5t;
T5x = ii[WS(rs, 57)];
TaI = T5s * T5x;
T5y = FMA(T5w, T5x, T5u);
TaJ = FNMS(T5w, T5t, TaI);
}
{
E T5q, T5H, Th1, Th2;
T5q = T5h + T5p;
T5H = T5y + T5G;
T5I = T5q + T5H;
TgM = T5H - T5q;
Th1 = TaC + TaE;
Th2 = TaJ + TaL;
Th3 = Th1 - Th2;
Tj0 = Th1 + Th2;
{
E TaG, Tbu, TaN, Tbt;
{
E TaA, TaF, TaH, TaM;
TaA = T5h - T5p;
TaF = TaC - TaE;
TaG = TaA + TaF;
Tbu = TaF - TaA;
TaH = T5y - T5G;
TaM = TaJ - TaL;
TaN = TaH - TaM;
Tbt = TaH + TaM;
}
TaO = TaG - TaN;
Tex = TaG + TaN;
Tbv = Tbt - Tbu;
Tem = Tbu + Tbt;
}
}
}
{
E T78, TbL, T7t, TbU, T7e, TbN, T7n, TbS;
{
E T75, T76, T77, TbK;
T75 = ri[WS(rs, 7)];
T76 = T1i * T75;
T77 = ii[WS(rs, 7)];
TbK = T1i * T77;
T78 = FMA(T1k, T77, T76);
TbL = FNMS(T1k, T75, TbK);
}
{
E T7p, T7q, T7s, TbT;
T7p = ri[WS(rs, 23)];
T7q = T7o * T7p;
T7s = ii[WS(rs, 23)];
TbT = T7o * T7s;
T7t = FMA(T7r, T7s, T7q);
TbU = FNMS(T7r, T7p, TbT);
}
{
E T7a, T7b, T7d, TbM;
T7a = ri[WS(rs, 39)];
T7b = T79 * T7a;
T7d = ii[WS(rs, 39)];
TbM = T79 * T7d;
T7e = FMA(T7c, T7d, T7b);
TbN = FNMS(T7c, T7a, TbM);
}
{
E T7i, T7j, T7m, TbR;
T7i = ri[WS(rs, 55)];
T7j = T7h * T7i;
T7m = ii[WS(rs, 55)];
TbR = T7h * T7m;
T7n = FMA(T7l, T7m, T7j);
TbS = FNMS(T7l, T7i, TbR);
}
{
E T7f, T7u, Ths, Tht;
T7f = T78 + T7e;
T7u = T7n + T7t;
T7v = T7f + T7u;
Thd = T7u - T7f;
Ths = TbL + TbN;
Tht = TbS + TbU;
Thu = Ths - Tht;
Tjb = Ths + Tht;
{
E TbP, TcD, TbW, TcC;
{
E TbJ, TbO, TbQ, TbV;
TbJ = T78 - T7e;
TbO = TbL - TbN;
TbP = TbJ + TbO;
TcD = TbO - TbJ;
TbQ = T7n - T7t;
TbV = TbS - TbU;
TbW = TbQ - TbV;
TcC = TbQ + TbV;
}
TbX = TbP - TbW;
TeQ = TbP + TbW;
TcE = TcC - TcD;
TeF = TcD + TcC;
}
}
}
{
E T5N, Tbd, T66, Tb9, T5T, Tbf, T5Y, Tb7;
{
E T5K, T5L, T5M, Tbc;
T5K = ri[WS(rs, 5)];
T5L = Td * T5K;
T5M = ii[WS(rs, 5)];
Tbc = Td * T5M;
T5N = FMA(Th, T5M, T5L);
Tbd = FNMS(Th, T5K, Tbc);
}
{
E T61, T62, T65, Tb8;
T61 = ri[WS(rs, 53)];
T62 = T60 * T61;
T65 = ii[WS(rs, 53)];
Tb8 = T60 * T65;
T66 = FMA(T64, T65, T62);
Tb9 = FNMS(T64, T61, Tb8);
}
{
E T5P, T5Q, T5S, Tbe;
T5P = ri[WS(rs, 37)];
T5Q = T5O * T5P;
T5S = ii[WS(rs, 37)];
Tbe = T5O * T5S;
T5T = FMA(T5R, T5S, T5Q);
Tbf = FNMS(T5R, T5P, Tbe);
}
{
E T5V, T5W, T5X, Tb6;
T5V = ri[WS(rs, 21)];
T5W = T3j * T5V;
T5X = ii[WS(rs, 21)];
Tb6 = T3j * T5X;
T5Y = FMA(T3m, T5X, T5W);
Tb7 = FNMS(T3m, T5V, Tb6);
}
{
E T5U, T67, TgR, TgO, TgP, TgQ;
T5U = T5N + T5T;
T67 = T5Y + T66;
TgR = T5U - T67;
TgO = Tbd + Tbf;
TgP = Tb7 + Tb9;
TgQ = TgO - TgP;
T68 = T5U + T67;
Tj5 = TgO + TgP;
TgS = TgQ - TgR;
Th5 = TgR + TgQ;
}
{
E Tbb, Tep, Tbi, Teo;
{
E Tb5, Tba, Tbg, Tbh;
Tb5 = T5N - T5T;
Tba = Tb7 - Tb9;
Tbb = Tb5 - Tba;
Tep = Tb5 + Tba;
Tbg = Tbd - Tbf;
Tbh = T5Y - T66;
Tbi = Tbg + Tbh;
Teo = Tbg - Tbh;
}
Tbj = FNMS(KP414213562, Tbi, Tbb);
Tez = FMA(KP414213562, Teo, Tep);
Tbx = FMA(KP414213562, Tbb, Tbi);
Teq = FNMS(KP414213562, Tep, Teo);
}
}
{
E T6g, TaY, T6z, TaU, T6m, Tb0, T6r, TaS;
{
E T6b, T6c, T6f, TaX;
T6b = ri[WS(rs, 61)];
T6c = T6a * T6b;
T6f = ii[WS(rs, 61)];
TaX = T6a * T6f;
T6g = FMA(T6e, T6f, T6c);
TaY = FNMS(T6e, T6b, TaX);
}
{
E T6u, T6v, T6y, TaT;
T6u = ri[WS(rs, 45)];
T6v = T6t * T6u;
T6y = ii[WS(rs, 45)];
TaT = T6t * T6y;
T6z = FMA(T6x, T6y, T6v);
TaU = FNMS(T6x, T6u, TaT);
}
{
E T6i, T6j, T6l, TaZ;
T6i = ri[WS(rs, 29)];
T6j = T6h * T6i;
T6l = ii[WS(rs, 29)];
TaZ = T6h * T6l;
T6m = FMA(T6k, T6l, T6j);
Tb0 = FNMS(T6k, T6i, TaZ);
}
{
E T6o, T6p, T6q, TaR;
T6o = ri[WS(rs, 13)];
T6p = T17 * T6o;
T6q = ii[WS(rs, 13)];
TaR = T17 * T6q;
T6r = FMA(T19, T6q, T6p);
TaS = FNMS(T19, T6o, TaR);
}
{
E T6n, T6A, TgT, TgU, TgV, TgW;
T6n = T6g + T6m;
T6A = T6r + T6z;
TgT = T6n - T6A;
TgU = TaY + Tb0;
TgV = TaS + TaU;
TgW = TgU - TgV;
T6B = T6n + T6A;
Tj6 = TgU + TgV;
TgX = TgT + TgW;
Th6 = TgT - TgW;
}
{
E TaW, Tes, Tb3, Ter;
{
E TaQ, TaV, Tb1, Tb2;
TaQ = T6g - T6m;
TaV = TaS - TaU;
TaW = TaQ - TaV;
Tes = TaQ + TaV;
Tb1 = TaY - Tb0;
Tb2 = T6r - T6z;
Tb3 = Tb1 + Tb2;
Ter = Tb1 - Tb2;
}
Tb4 = FMA(KP414213562, Tb3, TaW);
TeA = FNMS(KP414213562, Ter, Tes);
Tby = FNMS(KP414213562, TaW, Tb3);
Tet = FMA(KP414213562, Tes, Ter);
}
}
{
E T7A, Tcm, T7T, Tci, T7G, Tco, T7L, Tcg;
{
E T7x, T7y, T7z, Tcl;
T7x = ri[WS(rs, 3)];
T7y = T3 * T7x;
T7z = ii[WS(rs, 3)];
Tcl = T3 * T7z;
T7A = FMA(T6, T7z, T7y);
Tcm = FNMS(T6, T7x, Tcl);
}
{
E T7O, T7P, T7S, Tch;
T7O = ri[WS(rs, 51)];
T7P = T7N * T7O;
T7S = ii[WS(rs, 51)];
Tch = T7N * T7S;
T7T = FMA(T7R, T7S, T7P);
Tci = FNMS(T7R, T7O, Tch);
}
{
E T7C, T7D, T7F, Tcn;
T7C = ri[WS(rs, 35)];
T7D = T7B * T7C;
T7F = ii[WS(rs, 35)];
Tcn = T7B * T7F;
T7G = FMA(T7E, T7F, T7D);
Tco = FNMS(T7E, T7C, Tcn);
}
{
E T7I, T7J, T7K, Tcf;
T7I = ri[WS(rs, 19)];
T7J = T2u * T7I;
T7K = ii[WS(rs, 19)];
Tcf = T2u * T7K;
T7L = FMA(T2x, T7K, T7J);
Tcg = FNMS(T2x, T7I, Tcf);
}
{
E T7H, T7U, Thi, Thf, Thg, Thh;
T7H = T7A + T7G;
T7U = T7L + T7T;
Thi = T7H - T7U;
Thf = Tcm + Tco;
Thg = Tcg + Tci;
Thh = Thf - Thg;
T7V = T7H + T7U;
Tjg = Thf + Thg;
Thj = Thh - Thi;
Thw = Thi + Thh;
}
{
E Tck, TeI, Tcr, TeH;
{
E Tce, Tcj, Tcp, Tcq;
Tce = T7A - T7G;
Tcj = Tcg - Tci;
Tck = Tce - Tcj;
TeI = Tce + Tcj;
Tcp = Tcm - Tco;
Tcq = T7L - T7T;
Tcr = Tcp + Tcq;
TeH = Tcp - Tcq;
}
Tcs = FNMS(KP414213562, Tcr, Tck);
TeS = FMA(KP414213562, TeH, TeI);
TcG = FMA(KP414213562, Tck, Tcr);
TeJ = FNMS(KP414213562, TeI, TeH);
}
}
{
E T83, Tc7, T8k, Tc3, T87, Tc9, T8c, Tc1;
{
E T7Y, T7Z, T82, Tc6;
T7Y = ri[WS(rs, 59)];
T7Z = T7X * T7Y;
T82 = ii[WS(rs, 59)];
Tc6 = T7X * T82;
T83 = FMA(T81, T82, T7Z);
Tc7 = FNMS(T81, T7Y, Tc6);
}
{
E T8f, T8g, T8j, Tc2;
T8f = ri[WS(rs, 43)];
T8g = T8e * T8f;
T8j = ii[WS(rs, 43)];
Tc2 = T8e * T8j;
T8k = FMA(T8i, T8j, T8g);
Tc3 = FNMS(T8i, T8f, Tc2);
}
{
E T84, T85, T86, Tc8;
T84 = ri[WS(rs, 27)];
T85 = Te * T84;
T86 = ii[WS(rs, 27)];
Tc8 = Te * T86;
T87 = FMA(Ti, T86, T85);
Tc9 = FNMS(Ti, T84, Tc8);
}
{
E T89, T8a, T8b, Tc0;
T89 = ri[WS(rs, 11)];
T8a = Tu * T89;
T8b = ii[WS(rs, 11)];
Tc0 = Tu * T8b;
T8c = FMA(Tx, T8b, T8a);
Tc1 = FNMS(Tx, T89, Tc0);
}
{
E T88, T8l, Thk, Thl, Thm, Thn;
T88 = T83 + T87;
T8l = T8c + T8k;
Thk = T88 - T8l;
Thl = Tc7 + Tc9;
Thm = Tc1 + Tc3;
Thn = Thl - Thm;
T8m = T88 + T8l;
Tjh = Thl + Thm;
Tho = Thk + Thn;
Thx = Thk - Thn;
}
{
E Tc5, TeL, Tcc, TeK;
{
E TbZ, Tc4, Tca, Tcb;
TbZ = T83 - T87;
Tc4 = Tc1 - Tc3;
Tc5 = TbZ - Tc4;
TeL = TbZ + Tc4;
Tca = Tc7 - Tc9;
Tcb = T8c - T8k;
Tcc = Tca + Tcb;
TeK = Tca - Tcb;
}
Tcd = FMA(KP414213562, Tcc, Tc5);
TeT = FNMS(KP414213562, TeK, TeL);
TcH = FNMS(KP414213562, Tc5, Tcc);
TeM = FMA(KP414213562, TeL, TeK);
}
}
{
E T2I, TjG, T4N, Tkj, Tkf, Tkk, TjJ, Tk5, T8o, Tk2, TjU, TjY, T6D, Tk1, TjP;
E TjX;
{
E T1C, T2H, TjH, TjI;
T1C = TY + T1B;
T2H = T27 + T2G;
T2I = T1C + T2H;
TjG = T1C - T2H;
{
E T3L, T4M, Tk6, Tke;
T3L = T39 + T3K;
T4M = T4k + T4L;
T4N = T3L + T4M;
Tkj = T4M - T3L;
Tk6 = TiJ + TiK;
Tke = Tk7 + Tkd;
Tkf = Tk6 + Tke;
Tkk = Tke - Tk6;
}
TjH = TiN + TiO;
TjI = TiT + TiU;
TjJ = TjH - TjI;
Tk5 = TjH + TjI;
{
E T7w, T8n, TjQ, TjR, TjS, TjT;
T7w = T74 + T7v;
T8n = T7V + T8m;
TjQ = T7w - T8n;
TjR = Tja + Tjb;
TjS = Tjg + Tjh;
TjT = TjR - TjS;
T8o = T7w + T8n;
Tk2 = TjR + TjS;
TjU = TjQ - TjT;
TjY = TjQ + TjT;
}
{
E T5J, T6C, TjL, TjM, TjN, TjO;
T5J = T5d + T5I;
T6C = T68 + T6B;
TjL = T5J - T6C;
TjM = TiZ + Tj0;
TjN = Tj5 + Tj6;
TjO = TjM - TjN;
T6D = T5J + T6C;
Tk1 = TjM + TjN;
TjP = TjL + TjO;
TjX = TjO - TjL;
}
}
{
E T4O, T8p, Tk4, Tkg;
T4O = T2I + T4N;
T8p = T6D + T8o;
ri[WS(rs, 32)] = T4O - T8p;
ri[0] = T4O + T8p;
Tk4 = Tk1 + Tk2;
Tkg = Tk5 + Tkf;
ii[0] = Tk4 + Tkg;
ii[WS(rs, 32)] = Tkg - Tk4;
}
{
E TjK, TjV, Tkl, Tkm;
TjK = TjG + TjJ;
TjV = TjP + TjU;
ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK);
ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK);
Tkl = Tkj + Tkk;
Tkm = TjX + TjY;
ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl);
ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl);
}
{
E TjW, TjZ, Tkn, Tko;
TjW = TjG - TjJ;
TjZ = TjX - TjY;
ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW);
ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW);
Tkn = Tkk - Tkj;
Tko = TjU - TjP;
ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn);
ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn);
}
{
E Tk0, Tk3, Tkh, Tki;
Tk0 = T2I - T4N;
Tk3 = Tk1 - Tk2;
ri[WS(rs, 48)] = Tk0 - Tk3;
ri[WS(rs, 16)] = Tk0 + Tk3;
Tkh = T8o - T6D;
Tki = Tkf - Tk5;
ii[WS(rs, 16)] = Tkh + Tki;
ii[WS(rs, 48)] = Tki - Tkh;
}
}
{
E TiM, Tjq, Tkr, Tkx, TiX, Tky, Tjt, Tks, Tj9, TjD, Tjn, Tjx, Tjk, TjE, Tjo;
E TjA;
{
E TiI, TiL, Tkp, Tkq;
TiI = TY - T1B;
TiL = TiJ - TiK;
TiM = TiI - TiL;
Tjq = TiI + TiL;
Tkp = T2G - T27;
Tkq = Tkd - Tk7;
Tkr = Tkp + Tkq;
Tkx = Tkq - Tkp;
}
{
E TiR, Tjr, TiW, Tjs;
{
E TiP, TiQ, TiS, TiV;
TiP = TiN - TiO;
TiQ = T39 - T3K;
TiR = TiP - TiQ;
Tjr = TiQ + TiP;
TiS = T4k - T4L;
TiV = TiT - TiU;
TiW = TiS + TiV;
Tjs = TiS - TiV;
}
TiX = TiR - TiW;
Tky = Tjs - Tjr;
Tjt = Tjr + Tjs;
Tks = TiR + TiW;
}
{
E Tj3, Tjw, Tj8, Tjv;
{
E Tj1, Tj2, Tj4, Tj7;
Tj1 = TiZ - Tj0;
Tj2 = T6B - T68;
Tj3 = Tj1 - Tj2;
Tjw = Tj1 + Tj2;
Tj4 = T5d - T5I;
Tj7 = Tj5 - Tj6;
Tj8 = Tj4 - Tj7;
Tjv = Tj4 + Tj7;
}
Tj9 = FMA(KP414213562, Tj8, Tj3);
TjD = FNMS(KP414213562, Tjv, Tjw);
Tjn = FNMS(KP414213562, Tj3, Tj8);
Tjx = FMA(KP414213562, Tjw, Tjv);
}
{
E Tje, Tjz, Tjj, Tjy;
{
E Tjc, Tjd, Tjf, Tji;
Tjc = Tja - Tjb;
Tjd = T8m - T7V;
Tje = Tjc - Tjd;
Tjz = Tjc + Tjd;
Tjf = T74 - T7v;
Tji = Tjg - Tjh;
Tjj = Tjf - Tji;
Tjy = Tjf + Tji;
}
Tjk = FNMS(KP414213562, Tjj, Tje);
TjE = FMA(KP414213562, Tjy, Tjz);
Tjo = FMA(KP414213562, Tje, Tjj);
TjA = FNMS(KP414213562, Tjz, Tjy);
}
{
E TiY, Tjl, Tkz, TkA;
TiY = FMA(KP707106781, TiX, TiM);
Tjl = Tj9 - Tjk;
ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY);
ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY);
Tkz = FMA(KP707106781, Tky, Tkx);
TkA = Tjo - Tjn;
ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz);
ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz);
}
{
E Tjm, Tjp, TkB, TkC;
Tjm = FNMS(KP707106781, TiX, TiM);
Tjp = Tjn + Tjo;
ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm);
ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm);
TkB = FNMS(KP707106781, Tky, Tkx);
TkC = Tj9 + Tjk;
ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB);
ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB);
}
{
E Tju, TjB, Tkt, Tku;
Tju = FMA(KP707106781, Tjt, Tjq);
TjB = Tjx + TjA;
ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju);
ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju);
Tkt = FMA(KP707106781, Tks, Tkr);
Tku = TjD + TjE;
ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt);
ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt);
}
{
E TjC, TjF, Tkv, Tkw;
TjC = FNMS(KP707106781, Tjt, Tjq);
TjF = TjD - TjE;
ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC);
ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC);
Tkv = FNMS(KP707106781, Tks, Tkr);
Tkw = TjA - Tjx;
ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv);
ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv);
}
}
{
E Tgk, Tl1, ThG, TkV, Ti0, TkN, Tis, TkH, TgH, TkO, ThJ, TkI, Tim, TiG, Tiq;
E TiC, Th9, ThT, ThD, ThN, Ti7, Tl2, Tiv, TkW, Tif, TiF, Tip, Tiz, ThA, ThU;
E ThE, ThQ;
{
E Tg8, TkT, Tgj, TkU, Tgd, Tgi;
Tg8 = Tg4 + Tg7;
TkT = TkE - TkD;
Tgd = Tg9 + Tgc;
Tgi = Tge - Tgh;
Tgj = Tgd + Tgi;
TkU = Tgi - Tgd;
Tgk = FNMS(KP707106781, Tgj, Tg8);
Tl1 = FNMS(KP707106781, TkU, TkT);
ThG = FMA(KP707106781, Tgj, Tg8);
TkV = FMA(KP707106781, TkU, TkT);
}
{
E ThW, TkF, ThZ, TkG, ThX, ThY;
ThW = Tg4 - Tg7;
TkF = TkD + TkE;
ThX = Tgc - Tg9;
ThY = Tge + Tgh;
ThZ = ThX - ThY;
TkG = ThX + ThY;
Ti0 = FMA(KP707106781, ThZ, ThW);
TkN = FNMS(KP707106781, TkG, TkF);
Tis = FNMS(KP707106781, ThZ, ThW);
TkH = FMA(KP707106781, TkG, TkF);
}
{
E Tgv, ThH, TgG, ThI;
{
E Tgp, Tgu, TgA, TgF;
Tgp = Tgn + Tgo;
Tgu = Tgq + Tgt;
Tgv = FNMS(KP414213562, Tgu, Tgp);
ThH = FMA(KP414213562, Tgp, Tgu);
TgA = Tgy + Tgz;
TgF = TgB + TgE;
TgG = FMA(KP414213562, TgF, TgA);
ThI = FNMS(KP414213562, TgA, TgF);
}
TgH = Tgv - TgG;
TkO = ThI - ThH;
ThJ = ThH + ThI;
TkI = Tgv + TgG;
}
{
E Tii, TiB, Til, TiA;
{
E Tig, Tih, Tij, Tik;
Tig = Thr - Thu;
Tih = Tho - Thj;
Tii = FNMS(KP707106781, Tih, Tig);
TiB = FMA(KP707106781, Tih, Tig);
Tij = Thc - Thd;
Tik = Thw - Thx;
Til = FNMS(KP707106781, Tik, Tij);
TiA = FMA(KP707106781, Tik, Tij);
}
Tim = FNMS(KP668178637, Til, Tii);
TiG = FMA(KP198912367, TiA, TiB);
Tiq = FMA(KP668178637, Tii, Til);
TiC = FNMS(KP198912367, TiB, TiA);
}
{
E TgZ, ThM, Th8, ThL;
{
E TgN, TgY, Th4, Th7;
TgN = TgL + TgM;
TgY = TgS + TgX;
TgZ = FNMS(KP707106781, TgY, TgN);
ThM = FMA(KP707106781, TgY, TgN);
Th4 = Th0 + Th3;
Th7 = Th5 + Th6;
Th8 = FNMS(KP707106781, Th7, Th4);
ThL = FMA(KP707106781, Th7, Th4);
}
Th9 = FMA(KP668178637, Th8, TgZ);
ThT = FNMS(KP198912367, ThL, ThM);
ThD = FNMS(KP668178637, TgZ, Th8);
ThN = FMA(KP198912367, ThM, ThL);
}
{
E Ti3, Tit, Ti6, Tiu;
{
E Ti1, Ti2, Ti4, Ti5;
Ti1 = Tgn - Tgo;
Ti2 = Tgq - Tgt;
Ti3 = FMA(KP414213562, Ti2, Ti1);
Tit = FNMS(KP414213562, Ti1, Ti2);
Ti4 = Tgy - Tgz;
Ti5 = TgB - TgE;
Ti6 = FNMS(KP414213562, Ti5, Ti4);
Tiu = FMA(KP414213562, Ti4, Ti5);
}
Ti7 = Ti3 - Ti6;
Tl2 = Ti3 + Ti6;
Tiv = Tit + Tiu;
TkW = Tiu - Tit;
}
{
E Tib, Tiy, Tie, Tix;
{
E Ti9, Tia, Tic, Tid;
Ti9 = Th0 - Th3;
Tia = TgX - TgS;
Tib = FNMS(KP707106781, Tia, Ti9);
Tiy = FMA(KP707106781, Tia, Ti9);
Tic = TgL - TgM;
Tid = Th5 - Th6;
Tie = FNMS(KP707106781, Tid, Tic);
Tix = FMA(KP707106781, Tid, Tic);
}
Tif = FMA(KP668178637, Tie, Tib);
TiF = FNMS(KP198912367, Tix, Tiy);
Tip = FNMS(KP668178637, Tib, Tie);
Tiz = FMA(KP198912367, Tiy, Tix);
}
{
E Thq, ThP, Thz, ThO;
{
E The, Thp, Thv, Thy;
The = Thc + Thd;
Thp = Thj + Tho;
Thq = FNMS(KP707106781, Thp, The);
ThP = FMA(KP707106781, Thp, The);
Thv = Thr + Thu;
Thy = Thw + Thx;
Thz = FNMS(KP707106781, Thy, Thv);
ThO = FMA(KP707106781, Thy, Thv);
}
ThA = FNMS(KP668178637, Thz, Thq);
ThU = FMA(KP198912367, ThO, ThP);
ThE = FMA(KP668178637, Thq, Thz);
ThQ = FNMS(KP198912367, ThP, ThO);
}
{
E TgI, ThB, TkP, TkQ;
TgI = FMA(KP923879532, TgH, Tgk);
ThB = Th9 - ThA;
ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI);
ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI);
TkP = FMA(KP923879532, TkO, TkN);
TkQ = ThE - ThD;
ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP);
ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP);
}
{
E ThC, ThF, TkR, TkS;
ThC = FNMS(KP923879532, TgH, Tgk);
ThF = ThD + ThE;
ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC);
ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC);
TkR = FNMS(KP923879532, TkO, TkN);
TkS = Th9 + ThA;
ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR);
ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR);
}
{
E ThK, ThR, TkJ, TkK;
ThK = FMA(KP923879532, ThJ, ThG);
ThR = ThN + ThQ;
ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK);
ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK);
TkJ = FMA(KP923879532, TkI, TkH);
TkK = ThT + ThU;
ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ);
ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ);
}
{
E ThS, ThV, TkL, TkM;
ThS = FNMS(KP923879532, ThJ, ThG);
ThV = ThT - ThU;
ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS);
ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS);
TkL = FNMS(KP923879532, TkI, TkH);
TkM = ThQ - ThN;
ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL);
ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL);
}
{
E Ti8, Tin, TkX, TkY;
Ti8 = FMA(KP923879532, Ti7, Ti0);
Tin = Tif + Tim;
ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8);
ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8);
TkX = FMA(KP923879532, TkW, TkV);
TkY = Tip + Tiq;
ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX);
ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX);
}
{
E Tio, Tir, TkZ, Tl0;
Tio = FNMS(KP923879532, Ti7, Ti0);
Tir = Tip - Tiq;
ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio);
ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio);
TkZ = FNMS(KP923879532, TkW, TkV);
Tl0 = Tim - Tif;
ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ);
ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ);
}
{
E Tiw, TiD, Tl3, Tl4;
Tiw = FNMS(KP923879532, Tiv, Tis);
TiD = Tiz - TiC;
ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw);
ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw);
Tl3 = FNMS(KP923879532, Tl2, Tl1);
Tl4 = TiG - TiF;
ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3);
ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3);
}
{
E TiE, TiH, Tl5, Tl6;
TiE = FMA(KP923879532, Tiv, Tis);
TiH = TiF + TiG;
ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE);
ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE);
Tl5 = FMA(KP923879532, Tl2, Tl1);
Tl6 = Tiz + TiC;
ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5);
ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5);
}
}
{
E Tar, TlO, TcT, TlI, TbB, Td3, TcN, TcX, Tdw, TdQ, TdA, TdM, Tdp, TdP, Tdz;
E TdJ, Tdh, Tm2, TdF, TlW, TcK, Td4, TcO, Td0, T9i, TlV, Tm1, TcQ, Tda, TlH;
E TlN, TdC;
{
E T9R, TcR, Taq, TcS;
{
E T9F, T9Q, Tae, Tap;
T9F = FNMS(KP707106781, T9E, T9p);
T9Q = FNMS(KP707106781, T9P, T9M);
T9R = FNMS(KP668178637, T9Q, T9F);
TcR = FMA(KP668178637, T9F, T9Q);
Tae = FNMS(KP707106781, Tad, T9Y);
Tap = FNMS(KP707106781, Tao, Tal);
Taq = FMA(KP668178637, Tap, Tae);
TcS = FNMS(KP668178637, Tae, Tap);
}
Tar = T9R - Taq;
TlO = TcS - TcR;
TcT = TcR + TcS;
TlI = T9R + Taq;
}
{
E Tbl, TcW, TbA, TcV;
{
E TaP, Tbk, Tbw, Tbz;
TaP = FNMS(KP707106781, TaO, Taz);
Tbk = Tb4 - Tbj;
Tbl = FNMS(KP923879532, Tbk, TaP);
TcW = FMA(KP923879532, Tbk, TaP);
Tbw = FNMS(KP707106781, Tbv, Tbs);
Tbz = Tbx - Tby;
TbA = FNMS(KP923879532, Tbz, Tbw);
TcV = FMA(KP923879532, Tbz, Tbw);
}
TbB = FMA(KP534511135, TbA, Tbl);
Td3 = FNMS(KP303346683, TcV, TcW);
TcN = FNMS(KP534511135, Tbl, TbA);
TcX = FMA(KP303346683, TcW, TcV);
}
{
E Tds, TdL, Tdv, TdK;
{
E Tdq, Tdr, Tdt, Tdu;
Tdq = FMA(KP707106781, TcE, TcB);
Tdr = Tcs + Tcd;
Tds = FNMS(KP923879532, Tdr, Tdq);
TdL = FMA(KP923879532, Tdr, Tdq);
Tdt = FMA(KP707106781, TbX, TbI);
Tdu = TcG + TcH;
Tdv = FNMS(KP923879532, Tdu, Tdt);
TdK = FMA(KP923879532, Tdu, Tdt);
}
Tdw = FNMS(KP820678790, Tdv, Tds);
TdQ = FMA(KP098491403, TdK, TdL);
TdA = FMA(KP820678790, Tds, Tdv);
TdM = FNMS(KP098491403, TdL, TdK);
}
{
E Tdl, TdI, Tdo, TdH;
{
E Tdj, Tdk, Tdm, Tdn;
Tdj = FMA(KP707106781, Tbv, Tbs);
Tdk = Tbj + Tb4;
Tdl = FNMS(KP923879532, Tdk, Tdj);
TdI = FMA(KP923879532, Tdk, Tdj);
Tdm = FMA(KP707106781, TaO, Taz);
Tdn = Tbx + Tby;
Tdo = FNMS(KP923879532, Tdn, Tdm);
TdH = FMA(KP923879532, Tdn, Tdm);
}
Tdp = FMA(KP820678790, Tdo, Tdl);
TdP = FNMS(KP098491403, TdH, TdI);
Tdz = FNMS(KP820678790, Tdl, Tdo);
TdJ = FMA(KP098491403, TdI, TdH);
}
{
E Tdd, TdD, Tdg, TdE;
{
E Tdb, Tdc, Tde, Tdf;
Tdb = FMA(KP707106781, T9E, T9p);
Tdc = FMA(KP707106781, T9P, T9M);
Tdd = FMA(KP198912367, Tdc, Tdb);
TdD = FNMS(KP198912367, Tdb, Tdc);
Tde = FMA(KP707106781, Tad, T9Y);
Tdf = FMA(KP707106781, Tao, Tal);
Tdg = FNMS(KP198912367, Tdf, Tde);
TdE = FMA(KP198912367, Tde, Tdf);
}
Tdh = Tdd - Tdg;
Tm2 = Tdd + Tdg;
TdF = TdD + TdE;
TlW = TdE - TdD;
}
{
E Tcu, TcZ, TcJ, TcY;
{
E TbY, Tct, TcF, TcI;
TbY = FNMS(KP707106781, TbX, TbI);
Tct = Tcd - Tcs;
Tcu = FNMS(KP923879532, Tct, TbY);
TcZ = FMA(KP923879532, Tct, TbY);
TcF = FNMS(KP707106781, TcE, TcB);
TcI = TcG - TcH;
TcJ = FNMS(KP923879532, TcI, TcF);
TcY = FMA(KP923879532, TcI, TcF);
}
TcK = FNMS(KP534511135, TcJ, Tcu);
Td4 = FMA(KP303346683, TcY, TcZ);
TcO = FMA(KP534511135, Tcu, TcJ);
Td0 = FNMS(KP303346683, TcZ, TcY);
}
{
E T8M, Td6, TlF, TlT, T9h, TlU, Td9, TlG, T8L, TlE;
T8L = T8D - T8K;
T8M = FMA(KP707106781, T8L, T8w);
Td6 = FNMS(KP707106781, T8L, T8w);
TlE = TdU - TdT;
TlF = FMA(KP707106781, TlE, TlD);
TlT = FNMS(KP707106781, TlE, TlD);
{
E T91, T9g, Td7, Td8;
T91 = FMA(KP414213562, T90, T8T);
T9g = FNMS(KP414213562, T9f, T98);
T9h = T91 - T9g;
TlU = T91 + T9g;
Td7 = FNMS(KP414213562, T8T, T90);
Td8 = FMA(KP414213562, T98, T9f);
Td9 = Td7 + Td8;
TlG = Td8 - Td7;
}
T9i = FNMS(KP923879532, T9h, T8M);
TlV = FNMS(KP923879532, TlU, TlT);
Tm1 = FMA(KP923879532, TlU, TlT);
TcQ = FMA(KP923879532, T9h, T8M);
Tda = FNMS(KP923879532, Td9, Td6);
TlH = FMA(KP923879532, TlG, TlF);
TlN = FNMS(KP923879532, TlG, TlF);
TdC = FMA(KP923879532, Td9, Td6);
}
{
E Tas, TcL, TlP, TlQ;
Tas = FMA(KP831469612, Tar, T9i);
TcL = TbB - TcK;
ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas);
ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas);
TlP = FMA(KP831469612, TlO, TlN);
TlQ = TcO - TcN;
ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP);
ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP);
}
{
E TcM, TcP, TlR, TlS;
TcM = FNMS(KP831469612, Tar, T9i);
TcP = TcN + TcO;
ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM);
ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM);
TlR = FNMS(KP831469612, TlO, TlN);
TlS = TbB + TcK;
ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR);
ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR);
}
{
E TcU, Td1, TlJ, TlK;
TcU = FMA(KP831469612, TcT, TcQ);
Td1 = TcX + Td0;
ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU);
ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU);
TlJ = FMA(KP831469612, TlI, TlH);
TlK = Td3 + Td4;
ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ);
ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ);
}
{
E Td2, Td5, TlL, TlM;
Td2 = FNMS(KP831469612, TcT, TcQ);
Td5 = Td3 - Td4;
ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2);
ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2);
TlL = FNMS(KP831469612, TlI, TlH);
TlM = Td0 - TcX;
ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL);
ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL);
}
{
E Tdi, Tdx, TlX, TlY;
Tdi = FMA(KP980785280, Tdh, Tda);
Tdx = Tdp + Tdw;
ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi);
ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi);
TlX = FMA(KP980785280, TlW, TlV);
TlY = Tdz + TdA;
ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX);
ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX);
}
{
E Tdy, TdB, TlZ, Tm0;
Tdy = FNMS(KP980785280, Tdh, Tda);
TdB = Tdz - TdA;
ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy);
ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy);
TlZ = FNMS(KP980785280, TlW, TlV);
Tm0 = Tdw - Tdp;
ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ);
ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ);
}
{
E TdG, TdN, Tm3, Tm4;
TdG = FNMS(KP980785280, TdF, TdC);
TdN = TdJ - TdM;
ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG);
ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG);
Tm3 = FNMS(KP980785280, Tm2, Tm1);
Tm4 = TdQ - TdP;
ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3);
ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3);
}
{
E TdO, TdR, Tm5, Tm6;
TdO = FMA(KP980785280, TdF, TdC);
TdR = TdP + TdQ;
ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO);
ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO);
Tm5 = FMA(KP980785280, Tm2, Tm1);
Tm6 = TdJ + TdM;
ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5);
ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5);
}
}
{
E Tej, Tlk, Tf5, Tle, TeD, Tff, TeZ, Tf9, TfI, Tg2, TfM, TfY, TfB, Tg1, TfL;
E TfV, Tft, Tly, TfR, Tls, TeW, Tfg, Tf0, Tfc, Te4, Tlr, Tlx, Tf2, Tfm, Tld;
E Tlj, TfO;
{
E Teb, Tf3, Tei, Tf4;
{
E Te7, Tea, Tee, Teh;
Te7 = FMA(KP707106781, Te6, Te5);
Tea = FMA(KP707106781, Te9, Te8);
Teb = FNMS(KP198912367, Tea, Te7);
Tf3 = FMA(KP198912367, Te7, Tea);
Tee = FMA(KP707106781, Ted, Tec);
Teh = FMA(KP707106781, Teg, Tef);
Tei = FMA(KP198912367, Teh, Tee);
Tf4 = FNMS(KP198912367, Tee, Teh);
}
Tej = Teb - Tei;
Tlk = Tf4 - Tf3;
Tf5 = Tf3 + Tf4;
Tle = Teb + Tei;
}
{
E Tev, Tf8, TeC, Tf7;
{
E Ten, Teu, Tey, TeB;
Ten = FMA(KP707106781, Tem, Tel);
Teu = Teq + Tet;
Tev = FNMS(KP923879532, Teu, Ten);
Tf8 = FMA(KP923879532, Teu, Ten);
Tey = FMA(KP707106781, Tex, Tew);
TeB = Tez + TeA;
TeC = FNMS(KP923879532, TeB, Tey);
Tf7 = FMA(KP923879532, TeB, Tey);
}
TeD = FMA(KP820678790, TeC, Tev);
Tff = FNMS(KP098491403, Tf7, Tf8);
TeZ = FNMS(KP820678790, Tev, TeC);
Tf9 = FMA(KP098491403, Tf8, Tf7);
}
{
E TfE, TfX, TfH, TfW;
{
E TfC, TfD, TfF, TfG;
TfC = FNMS(KP707106781, TeQ, TeP);
TfD = TeM - TeJ;
TfE = FNMS(KP923879532, TfD, TfC);
TfX = FMA(KP923879532, TfD, TfC);
TfF = FNMS(KP707106781, TeF, TeE);
TfG = TeS - TeT;
TfH = FNMS(KP923879532, TfG, TfF);
TfW = FMA(KP923879532, TfG, TfF);
}
TfI = FNMS(KP534511135, TfH, TfE);
Tg2 = FMA(KP303346683, TfW, TfX);
TfM = FMA(KP534511135, TfE, TfH);
TfY = FNMS(KP303346683, TfX, TfW);
}
{
E Tfx, TfU, TfA, TfT;
{
E Tfv, Tfw, Tfy, Tfz;
Tfv = FNMS(KP707106781, Tex, Tew);
Tfw = Tet - Teq;
Tfx = FNMS(KP923879532, Tfw, Tfv);
TfU = FMA(KP923879532, Tfw, Tfv);
Tfy = FNMS(KP707106781, Tem, Tel);
Tfz = Tez - TeA;
TfA = FNMS(KP923879532, Tfz, Tfy);
TfT = FMA(KP923879532, Tfz, Tfy);
}
TfB = FMA(KP534511135, TfA, Tfx);
Tg1 = FNMS(KP303346683, TfT, TfU);
TfL = FNMS(KP534511135, Tfx, TfA);
TfV = FMA(KP303346683, TfU, TfT);
}
{
E Tfp, TfP, Tfs, TfQ;
{
E Tfn, Tfo, Tfq, Tfr;
Tfn = FNMS(KP707106781, Te6, Te5);
Tfo = FNMS(KP707106781, Te9, Te8);
Tfp = FMA(KP668178637, Tfo, Tfn);
TfP = FNMS(KP668178637, Tfn, Tfo);
Tfq = FNMS(KP707106781, Ted, Tec);
Tfr = FNMS(KP707106781, Teg, Tef);
Tfs = FNMS(KP668178637, Tfr, Tfq);
TfQ = FMA(KP668178637, Tfq, Tfr);
}
Tft = Tfp - Tfs;
Tly = Tfp + Tfs;
TfR = TfP + TfQ;
Tls = TfQ - TfP;
}
{
E TeO, Tfb, TeV, Tfa;
{
E TeG, TeN, TeR, TeU;
TeG = FMA(KP707106781, TeF, TeE);
TeN = TeJ + TeM;
TeO = FNMS(KP923879532, TeN, TeG);
Tfb = FMA(KP923879532, TeN, TeG);
TeR = FMA(KP707106781, TeQ, TeP);
TeU = TeS + TeT;
TeV = FNMS(KP923879532, TeU, TeR);
Tfa = FMA(KP923879532, TeU, TeR);
}
TeW = FNMS(KP820678790, TeV, TeO);
Tfg = FMA(KP098491403, Tfa, Tfb);
Tf0 = FMA(KP820678790, TeO, TeV);
Tfc = FNMS(KP098491403, Tfb, Tfa);
}
{
E TdW, Tfi, Tlb, Tlp, Te3, Tlq, Tfl, Tlc, TdV, Tla;
TdV = TdT + TdU;
TdW = FMA(KP707106781, TdV, TdS);
Tfi = FNMS(KP707106781, TdV, TdS);
Tla = T8D + T8K;
Tlb = FMA(KP707106781, Tla, Tl9);
Tlp = FNMS(KP707106781, Tla, Tl9);
{
E TdZ, Te2, Tfj, Tfk;
TdZ = FMA(KP414213562, TdY, TdX);
Te2 = FNMS(KP414213562, Te1, Te0);
Te3 = TdZ + Te2;
Tlq = Te2 - TdZ;
Tfj = FNMS(KP414213562, TdX, TdY);
Tfk = FMA(KP414213562, Te0, Te1);
Tfl = Tfj - Tfk;
Tlc = Tfj + Tfk;
}
Te4 = FNMS(KP923879532, Te3, TdW);
Tlr = FMA(KP923879532, Tlq, Tlp);
Tlx = FNMS(KP923879532, Tlq, Tlp);
Tf2 = FMA(KP923879532, Te3, TdW);
Tfm = FMA(KP923879532, Tfl, Tfi);
Tld = FMA(KP923879532, Tlc, Tlb);
Tlj = FNMS(KP923879532, Tlc, Tlb);
TfO = FNMS(KP923879532, Tfl, Tfi);
}
{
E Tek, TeX, Tll, Tlm;
Tek = FMA(KP980785280, Tej, Te4);
TeX = TeD - TeW;
ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek);
ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek);
Tll = FMA(KP980785280, Tlk, Tlj);
Tlm = Tf0 - TeZ;
ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll);
ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll);
}
{
E TeY, Tf1, Tln, Tlo;
TeY = FNMS(KP980785280, Tej, Te4);
Tf1 = TeZ + Tf0;
ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY);
ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY);
Tln = FNMS(KP980785280, Tlk, Tlj);
Tlo = TeD + TeW;
ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln);
ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln);
}
{
E Tf6, Tfd, Tlf, Tlg;
Tf6 = FMA(KP980785280, Tf5, Tf2);
Tfd = Tf9 + Tfc;
ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6);
ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6);
Tlf = FMA(KP980785280, Tle, Tld);
Tlg = Tff + Tfg;
ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf);
ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf);
}
{
E Tfe, Tfh, Tlh, Tli;
Tfe = FNMS(KP980785280, Tf5, Tf2);
Tfh = Tff - Tfg;
ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe);
ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe);
Tlh = FNMS(KP980785280, Tle, Tld);
Tli = Tfc - Tf9;
ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh);
ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh);
}
{
E Tfu, TfJ, Tlt, Tlu;
Tfu = FMA(KP831469612, Tft, Tfm);
TfJ = TfB + TfI;
ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu);
ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu);
Tlt = FMA(KP831469612, Tls, Tlr);
Tlu = TfL + TfM;
ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt);
ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt);
}
{
E TfK, TfN, Tlv, Tlw;
TfK = FNMS(KP831469612, Tft, Tfm);
TfN = TfL - TfM;
ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK);
ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK);
Tlv = FNMS(KP831469612, Tls, Tlr);
Tlw = TfI - TfB;
ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv);
ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv);
}
{
E TfS, TfZ, Tlz, TlA;
TfS = FNMS(KP831469612, TfR, TfO);
TfZ = TfV - TfY;
ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS);
ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS);
Tlz = FNMS(KP831469612, Tly, Tlx);
TlA = Tg2 - Tg1;
ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz);
ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz);
}
{
E Tg0, Tg3, TlB, TlC;
Tg0 = FMA(KP831469612, TfR, TfO);
Tg3 = Tg1 + Tg2;
ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0);
ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0);
TlB = FMA(KP831469612, Tly, Tlx);
TlC = TfV + TfY;
ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB);
ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB);
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_CEXP, 0, 27 },
{ TW_CEXP, 0, 63 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, { 520, 206, 634, 0 }, 0, 0, 0 };
void X(codelet_t2_64) (planner *p) {
X(kdft_dit_register) (p, t2_64, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */
/*
* This function contains 1154 FP additions, 660 FP multiplications,
* (or, 880 additions, 386 multiplications, 274 fused multiply/add),
* 302 stack variables, 15 constants, and 256 memory accesses
*/
#include "dft/scalar/t.h"
static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP471396736, +0.471396736825997648556387625905254377657460319);
DK(KP881921264, +0.881921264348355029712756863660388349508442621);
DK(KP290284677, +0.290284677254462367636192375817395274691476278);
DK(KP956940335, +0.956940335732208864935797886980269969482849206);
DK(KP634393284, +0.634393284163645498215171613225493370675687095);
DK(KP773010453, +0.773010453362736960810906609758469800971041293);
DK(KP098017140, +0.098017140329560601994195563888641845861136673);
DK(KP995184726, +0.995184726672196886244836953109479921575474869);
DK(KP555570233, +0.555570233019602224742830813948532874374937191);
DK(KP831469612, +0.831469612302545237078788377617905756738560812);
DK(KP980785280, +0.980785280403230449126182236134239036973933731);
DK(KP195090322, +0.195090322016128267848284868477022240927691618);
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) {
E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8;
E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q;
E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j;
E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H;
E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m;
E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69;
E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32;
E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D;
E T3F, T5r, T3s, T4W, T3Z, T5p;
{
E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A;
E T1F, T2p, T2k, T1U, T1P;
{
E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN;
T2 = W[0];
T5 = W[1];
T3 = W[2];
T6 = W[3];
Te = W[5];
T9 = W[4];
T4 = T2 * T3;
T1d = T5 * T9;
T19 = T5 * Te;
Tb = T2 * T6;
T1c = T2 * Te;
T7 = T5 * T6;
Tc = T5 * T3;
T18 = T2 * T9;
TR = T3 * Te;
TO = T6 * Te;
TS = T6 * T9;
TN = T3 * T9;
TP = TN - TO;
T3e = TR - TS;
T1e = T1c - T1d;
T39 = T1c + T1d;
T3c = TN + TO;
TT = TR + TS;
T1a = T18 + T19;
T37 = T18 - T19;
T8 = T4 - T7;
Ta = T8 * T9;
Tj = T8 * Te;
Tw = T4 + T7;
Tx = Tw * T9;
TC = Tw * Te;
Td = Tb + Tc;
Tf = Td * Te;
Tk = Td * T9;
Ty = Tb - Tc;
Tz = Ty * Te;
TD = Ty * T9;
Tm = W[7];
T1B = T6 * Tm;
T1E = T3 * Tm;
T2o = T2 * Tm;
T2l = T5 * Tm;
T1T = T9 * Tm;
T1Q = Te * Tm;
Th = W[6];
T1A = T3 * Th;
T1F = T6 * Th;
T2p = T5 * Th;
T2k = T2 * Th;
T1U = Te * Th;
T1P = T9 * Th;
}
T1C = T1A + T1B;
T3K = T1E + T1F;
T1V = T1T + T1U;
T3x = T2o - T2p;
T3I = T1A - T1B;
T1G = T1E - T1F;
T1R = T1P - T1Q;
{
E T5W, T5X, T55, T56;
T3v = T2k + T2l;
T2m = T2k - T2l;
T2q = T2o + T2p;
T5W = T8 * Th;
T5X = Td * Tm;
T5Y = T5W - T5X;
T6u = T5W + T5X;
{
E T51, T52, T60, T61;
T51 = Tw * Th;
T52 = Ty * Tm;
T53 = T51 + T52;
T5B = T51 - T52;
T60 = T8 * Tm;
T61 = Td * Th;
T62 = T60 + T61;
T6w = T60 - T61;
}
T55 = Tw * Tm;
T56 = Ty * Th;
T57 = T55 - T56;
T5D = T55 + T56;
{
E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d;
E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY;
E T1i, T1n;
T2V = T1P + T1Q;
T2X = T1T - T1U;
Tg = Ta + Tf;
Ti = Tg * Th;
Tq = Tg * Tm;
TE = TC + TD;
TF = TE * Tm;
TJ = TE * Th;
T3W = T37 * Tm;
T3X = T39 * Th;
T3Y = T3W - T3X;
T3T = T37 * Th;
T3U = T39 * Tm;
T3V = T3T + T3U;
T3h = T3c * Tm;
T3i = T3e * Th;
T3j = T3h - T3i;
Tl = Tj - Tk;
Tn = Tl * Tm;
Tr = Tl * Th;
TA = Tx - Tz;
TB = TA * Th;
TI = TA * Tm;
T3d = T3c * Th;
T3f = T3e * Tm;
T3g = T3d + T3f;
T1j = Tj + Tk;
T1k = T1j * Tm;
T1o = T1j * Th;
T1t = Tx + Tz;
T1Z = T1t * Th;
T23 = T1t * Tm;
TQ = TP * Th;
TU = TT * Tm;
TV = TQ + TU;
T2A = T1a * Tm;
T2B = T1e * Th;
T2C = T2A - T2B;
T2x = T1a * Th;
T2y = T1e * Tm;
T2z = T2x + T2y;
T1u = TC - TD;
T20 = T1u * Tm;
T24 = T1u * Th;
TX = TP * Tm;
TY = TT * Th;
TZ = TX - TY;
T1h = Ta - Tf;
T1i = T1h * Th;
T1n = T1h * Tm;
To = Ti - Tn;
T1p = T1n + T1o;
T6j = TQ - TU;
T6H = T2A + T2B;
Ts = Tq + Tr;
T1l = T1i - T1k;
T6l = TX + TY;
T6F = T2x - T2y;
T2P = T1Z - T20;
T4b = TI + TJ;
T4x = T3d - T3f;
T5i = T3W + T3X;
T2R = T23 + T24;
T49 = TB - TF;
T4z = T3h + T3i;
T5g = T3T - T3U;
TG = TB + TF;
T4k = Ti + Tn;
T4m = Tq - Tr;
TK = TI - TJ;
T21 = T1Z + T20;
T3O = T1i + T1k;
T3Q = T1n - T1o;
T25 = T23 - T24;
TW = W[8];
T10 = W[9];
T11 = FMA(TV, TW, TZ * T10);
T79 = FNMS(T25, TW, T21 * T10);
T6X = FNMS(Td, TW, T8 * T10);
T5M = FNMS(T2X, TW, T2V * T10);
T6b = FNMS(TK, TW, TG * T10);
T1v = FMA(T1t, TW, T1u * T10);
T30 = FMA(T1h, TW, T1j * T10);
T69 = FMA(TG, TW, TK * T10);
T77 = FMA(T21, TW, T25 * T10);
T13 = FNMS(TZ, TW, TV * T10);
T2F = FNMS(T2C, TW, T2z * T10);
T2D = FMA(T2z, TW, T2C * T10);
T6p = FMA(T1a, TW, T1e * T10);
T6O = FMA(TP, TW, TT * T10);
T1x = FNMS(T1u, TW, T1t * T10);
T2a = FNMS(TE, TW, TA * T10);
T2f = FMA(T3, TW, T6 * T10);
T6V = FMA(T8, TW, Td * T10);
T28 = FMA(TA, TW, TE * T10);
T6r = FNMS(T1e, TW, T1a * T10);
T2h = FNMS(T6, TW, T3 * T10);
T6Q = FNMS(TT, TW, TP * T10);
T32 = FNMS(T1j, TW, T1h * T10);
T5K = FMA(T2V, TW, T2X * T10);
T5w = FMA(Tw, TW, Ty * T10);
T4G = FMA(T3O, TW, T3Q * T10);
T4Q = FMA(T4k, TW, T4m * T10);
T3m = FNMS(T3j, TW, T3g * T10);
T4h = FNMS(Te, TW, T9 * T10);
T4I = FNMS(T3Q, TW, T3O * T10);
T5y = FNMS(Ty, TW, Tw * T10);
T3k = FMA(T3g, TW, T3j * T10);
T4f = FMA(T9, TW, Te * T10);
T41 = FNMS(T3Y, TW, T3V * T10);
T4S = FNMS(T4m, TW, T4k * T10);
T4Y = FNMS(T3e, TW, T3c * T10);
T3q = FMA(Tg, TW, Tl * T10);
T3D = FMA(T2, TW, T5 * T10);
T3F = FNMS(T5, TW, T2 * T10);
T5r = FNMS(T39, TW, T37 * T10);
T3s = FNMS(Tl, TW, Tg * T10);
T4W = FMA(T3c, TW, T3e * T10);
T3Z = FMA(T3V, TW, T3Y * T10);
T5p = FMA(T37, TW, T39 * T10);
}
}
}
{
E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM;
E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb;
E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k;
E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW;
E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N;
E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD;
E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY;
E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn;
E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK;
{
E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt;
T1 = ri[0];
Ti1 = ii[0];
Tp = ri[WS(rs, 32)];
Tt = ii[WS(rs, 32)];
Tu = FMA(To, Tp, Ts * Tt);
Ti0 = FNMS(Ts, Tp, To * Tt);
{
E TH, TL, T12, T14;
TH = ri[WS(rs, 16)];
TL = ii[WS(rs, 16)];
TM = FMA(TG, TH, TK * TL);
T7i = FNMS(TK, TH, TG * TL);
T12 = ri[WS(rs, 48)];
T14 = ii[WS(rs, 48)];
T15 = FMA(T11, T12, T13 * T14);
T7j = FNMS(T13, T12, T11 * T14);
}
{
E Tv, T16, Tj1, Tj2;
Tv = T1 + Tu;
T16 = TM + T15;
T17 = Tv + T16;
TdV = Tv - T16;
Tj1 = Ti1 - Ti0;
Tj2 = TM - T15;
Tj3 = Tj1 - Tj2;
Tjx = Tj2 + Tj1;
}
{
E T7h, T7k, ThZ, Ti2;
T7h = T1 - Tu;
T7k = T7i - T7j;
T7l = T7h - T7k;
TbJ = T7h + T7k;
ThZ = T7i + T7j;
Ti2 = Ti0 + Ti1;
Ti3 = ThZ + Ti2;
Tix = Ti2 - ThZ;
}
}
{
E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u;
{
E T1b, T1f, T1m, T1q;
T1b = ri[WS(rs, 8)];
T1f = ii[WS(rs, 8)];
T1g = FMA(T1a, T1b, T1e * T1f);
T7m = FNMS(T1e, T1b, T1a * T1f);
T1m = ri[WS(rs, 40)];
T1q = ii[WS(rs, 40)];
T1r = FMA(T1l, T1m, T1p * T1q);
T7n = FNMS(T1p, T1m, T1l * T1q);
}
T7o = T7m - T7n;
T7p = T1g - T1r;
{
E T1w, T1y, T1D, T1H;
T1w = ri[WS(rs, 56)];
T1y = ii[WS(rs, 56)];
T1z = FMA(T1v, T1w, T1x * T1y);
T7s = FNMS(T1x, T1w, T1v * T1y);
T1D = ri[WS(rs, 24)];
T1H = ii[WS(rs, 24)];
T1I = FMA(T1C, T1D, T1G * T1H);
T7t = FNMS(T1G, T1D, T1C * T1H);
}
T7r = T1z - T1I;
T7u = T7s - T7t;
{
E T1s, T1J, TdW, TdX;
T1s = T1g + T1r;
T1J = T1z + T1I;
T1K = T1s + T1J;
Tiw = T1J - T1s;
TdW = T7m + T7n;
TdX = T7s + T7t;
TdY = TdW - TdX;
ThY = TdW + TdX;
}
{
E T7q, T7v, TbK, TbL;
T7q = T7o - T7p;
T7v = T7r + T7u;
T7w = KP707106781 * (T7q - T7v);
Tj0 = KP707106781 * (T7q + T7v);
TbK = T7p + T7o;
TbL = T7r - T7u;
TbM = KP707106781 * (TbK + TbL);
Tjw = KP707106781 * (TbL - TbK);
}
}
{
E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H;
{
E T1O, T7y, T1X, T7z;
{
E T1M, T1N, T1S, T1W;
T1M = ri[WS(rs, 4)];
T1N = ii[WS(rs, 4)];
T1O = FMA(T8, T1M, Td * T1N);
T7y = FNMS(Td, T1M, T8 * T1N);
T1S = ri[WS(rs, 36)];
T1W = ii[WS(rs, 36)];
T1X = FMA(T1R, T1S, T1V * T1W);
T7z = FNMS(T1V, T1S, T1R * T1W);
}
T1Y = T1O + T1X;
Te0 = T7y + T7z;
T7A = T7y - T7z;
T7D = T1O - T1X;
}
{
E T27, T7E, T2c, T7F;
{
E T22, T26, T29, T2b;
T22 = ri[WS(rs, 20)];
T26 = ii[WS(rs, 20)];
T27 = FMA(T21, T22, T25 * T26);
T7E = FNMS(T25, T22, T21 * T26);
T29 = ri[WS(rs, 52)];
T2b = ii[WS(rs, 52)];
T2c = FMA(T28, T29, T2a * T2b);
T7F = FNMS(T2a, T29, T28 * T2b);
}
T2d = T27 + T2c;
Te1 = T7E + T7F;
T7B = T27 - T2c;
T7G = T7E - T7F;
}
T2e = T1Y + T2d;
TgA = Te0 + Te1;
T7C = T7A + T7B;
T7H = T7D - T7G;
T7I = FNMS(KP923879532, T7H, KP382683432 * T7C);
TaY = FMA(KP923879532, T7C, KP382683432 * T7H);
{
E TbO, TbP, Te2, Te3;
TbO = T7A - T7B;
TbP = T7D + T7G;
TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO);
Tda = FMA(KP382683432, TbO, KP923879532 * TbP);
Te2 = Te0 - Te1;
Te3 = T1Y - T2d;
Te4 = Te2 - Te3;
TfO = Te3 + Te2;
}
}
{
E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S;
{
E T2j, T7J, T2s, T7K;
{
E T2g, T2i, T2n, T2r;
T2g = ri[WS(rs, 60)];
T2i = ii[WS(rs, 60)];
T2j = FMA(T2f, T2g, T2h * T2i);
T7J = FNMS(T2h, T2g, T2f * T2i);
T2n = ri[WS(rs, 28)];
T2r = ii[WS(rs, 28)];
T2s = FMA(T2m, T2n, T2q * T2r);
T7K = FNMS(T2q, T2n, T2m * T2r);
}
T2t = T2j + T2s;
Te6 = T7J + T7K;
T7L = T7J - T7K;
T7O = T2j - T2s;
}
{
E T2w, T7P, T2H, T7Q;
{
E T2u, T2v, T2E, T2G;
T2u = ri[WS(rs, 12)];
T2v = ii[WS(rs, 12)];
T2w = FMA(TP, T2u, TT * T2v);
T7P = FNMS(TT, T2u, TP * T2v);
T2E = ri[WS(rs, 44)];
T2G = ii[WS(rs, 44)];
T2H = FMA(T2D, T2E, T2F * T2G);
T7Q = FNMS(T2F, T2E, T2D * T2G);
}
T2I = T2w + T2H;
Te7 = T7P + T7Q;
T7M = T2w - T2H;
T7R = T7P - T7Q;
}
T2J = T2t + T2I;
TgB = Te6 + Te7;
T7N = T7L + T7M;
T7S = T7O - T7R;
T7T = FMA(KP382683432, T7N, KP923879532 * T7S);
TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S);
{
E TbR, TbS, Te5, Te8;
TbR = T7L - T7M;
TbS = T7O + T7R;
TbT = FMA(KP923879532, TbR, KP382683432 * TbS);
Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS);
Te5 = T2t - T2I;
Te8 = Te6 - Te7;
Te9 = Te5 + Te8;
TfP = Te5 - Te8;
}
}
{
E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86;
E T89, T3A, Tej, T81, T84;
{
E T2M, T2N, T2Q, T2S;
T2M = ri[WS(rs, 2)];
T2N = ii[WS(rs, 2)];
T2O = FMA(Tw, T2M, Ty * T2N);
T7W = FNMS(Ty, T2M, Tw * T2N);
T2Q = ri[WS(rs, 34)];
T2S = ii[WS(rs, 34)];
T2T = FMA(T2P, T2Q, T2R * T2S);
T7X = FNMS(T2R, T2Q, T2P * T2S);
}
T2U = T2O + T2T;
Tec = T7W + T7X;
{
E T2W, T2Y, T31, T33;
T2W = ri[WS(rs, 18)];
T2Y = ii[WS(rs, 18)];
T2Z = FMA(T2V, T2W, T2X * T2Y);
T8e = FNMS(T2X, T2W, T2V * T2Y);
T31 = ri[WS(rs, 50)];
T33 = ii[WS(rs, 50)];
T34 = FMA(T30, T31, T32 * T33);
T8f = FNMS(T32, T31, T30 * T33);
}
T35 = T2Z + T34;
Ted = T8e + T8f;
{
E T3b, T87, T3o, T88;
{
E T38, T3a, T3l, T3n;
T38 = ri[WS(rs, 10)];
T3a = ii[WS(rs, 10)];
T3b = FMA(T37, T38, T39 * T3a);
T87 = FNMS(T39, T38, T37 * T3a);
T3l = ri[WS(rs, 42)];
T3n = ii[WS(rs, 42)];
T3o = FMA(T3k, T3l, T3m * T3n);
T88 = FNMS(T3m, T3l, T3k * T3n);
}
T3p = T3b + T3o;
Tei = T87 + T88;
T86 = T3b - T3o;
T89 = T87 - T88;
}
{
E T3u, T82, T3z, T83;
{
E T3r, T3t, T3w, T3y;
T3r = ri[WS(rs, 58)];
T3t = ii[WS(rs, 58)];
T3u = FMA(T3q, T3r, T3s * T3t);
T82 = FNMS(T3s, T3r, T3q * T3t);
T3w = ri[WS(rs, 26)];
T3y = ii[WS(rs, 26)];
T3z = FMA(T3v, T3w, T3x * T3y);
T83 = FNMS(T3x, T3w, T3v * T3y);
}
T3A = T3u + T3z;
Tej = T82 + T83;
T81 = T3u - T3z;
T84 = T82 - T83;
}
T36 = T2U + T35;
T3B = T3p + T3A;
TgH = T36 - T3B;
TgE = Tec + Ted;
TgF = Tei + Tej;
TgG = TgE - TgF;
{
E T7Y, T7Z, Teh, Tek;
T7Y = T7W - T7X;
T7Z = T2Z - T34;
T80 = T7Y + T7Z;
TbW = T7Y - T7Z;
Teh = T2U - T35;
Tek = Tei - Tej;
Tel = Teh - Tek;
TfT = Teh + Tek;
}
{
E T85, T8a, T8i, T8j;
T85 = T81 - T84;
T8a = T86 + T89;
T8b = KP707106781 * (T85 - T8a);
Tc0 = KP707106781 * (T8a + T85);
T8i = T89 - T86;
T8j = T81 + T84;
T8k = KP707106781 * (T8i - T8j);
TbX = KP707106781 * (T8i + T8j);
}
{
E Tee, Tef, T8d, T8g;
Tee = Tec - Ted;
Tef = T3A - T3p;
Teg = Tee - Tef;
TfS = Tee + Tef;
T8d = T2O - T2T;
T8g = T8e - T8f;
T8h = T8d - T8g;
TbZ = T8d + T8g;
}
}
{
E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x;
E T8A, T4p, Teu, T8s, T8v;
{
E T3E, T3G, T3J, T3L;
T3E = ri[WS(rs, 62)];
T3G = ii[WS(rs, 62)];
T3H = FMA(T3D, T3E, T3F * T3G);
T8n = FNMS(T3F, T3E, T3D * T3G);
T3J = ri[WS(rs, 30)];
T3L = ii[WS(rs, 30)];
T3M = FMA(T3I, T3J, T3K * T3L);
T8o = FNMS(T3K, T3J, T3I * T3L);
}
T3N = T3H + T3M;
Ten = T8n + T8o;
{
E T3P, T3R, T40, T42;
T3P = ri[WS(rs, 14)];
T3R = ii[WS(rs, 14)];
T3S = FMA(T3O, T3P, T3Q * T3R);
T8F = FNMS(T3Q, T3P, T3O * T3R);
T40 = ri[WS(rs, 46)];
T42 = ii[WS(rs, 46)];
T43 = FMA(T3Z, T40, T41 * T42);
T8G = FNMS(T41, T40, T3Z * T42);
}
T44 = T3S + T43;
Teo = T8F + T8G;
{
E T48, T8y, T4d, T8z;
{
E T46, T47, T4a, T4c;
T46 = ri[WS(rs, 6)];
T47 = ii[WS(rs, 6)];
T48 = FMA(T3c, T46, T3e * T47);
T8y = FNMS(T3e, T46, T3c * T47);
T4a = ri[WS(rs, 38)];
T4c = ii[WS(rs, 38)];
T4d = FMA(T49, T4a, T4b * T4c);
T8z = FNMS(T4b, T4a, T49 * T4c);
}
T4e = T48 + T4d;
Tet = T8y + T8z;
T8x = T48 - T4d;
T8A = T8y - T8z;
}
{
E T4j, T8t, T4o, T8u;
{
E T4g, T4i, T4l, T4n;
T4g = ri[WS(rs, 54)];
T4i = ii[WS(rs, 54)];
T4j = FMA(T4f, T4g, T4h * T4i);
T8t = FNMS(T4h, T4g, T4f * T4i);
T4l = ri[WS(rs, 22)];
T4n = ii[WS(rs, 22)];
T4o = FMA(T4k, T4l, T4m * T4n);
T8u = FNMS(T4m, T4l, T4k * T4n);
}
T4p = T4j + T4o;
Teu = T8t + T8u;
T8s = T4j - T4o;
T8v = T8t - T8u;
}
T45 = T3N + T44;
T4q = T4e + T4p;
TgJ = T45 - T4q;
TgK = Ten + Teo;
TgL = Tet + Teu;
TgM = TgK - TgL;
{
E T8p, T8q, Tes, Tev;
T8p = T8n - T8o;
T8q = T3S - T43;
T8r = T8p + T8q;
Tc6 = T8p - T8q;
Tes = T3N - T44;
Tev = Tet - Teu;
Tew = Tes - Tev;
TfW = Tes + Tev;
}
{
E T8w, T8B, T8J, T8K;
T8w = T8s - T8v;
T8B = T8x + T8A;
T8C = KP707106781 * (T8w - T8B);
Tc4 = KP707106781 * (T8B + T8w);
T8J = T8A - T8x;
T8K = T8s + T8v;
T8L = KP707106781 * (T8J - T8K);
Tc7 = KP707106781 * (T8J + T8K);
}
{
E Tep, Teq, T8E, T8H;
Tep = Ten - Teo;
Teq = T4p - T4e;
Ter = Tep - Teq;
TfV = Tep + Teq;
T8E = T3H - T3M;
T8H = T8F - T8G;
T8I = T8E - T8H;
Tc3 = T8E + T8H;
}
}
{
E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q;
E T9R, T6z, Tf3, T9T, T9W;
{
E T5T, T5U, T5Z, T63;
T5T = ri[WS(rs, 63)];
T5U = ii[WS(rs, 63)];
T5V = FMA(TW, T5T, T10 * T5U);
Tao = FNMS(T10, T5T, TW * T5U);
T5Z = ri[WS(rs, 31)];
T63 = ii[WS(rs, 31)];
T64 = FMA(T5Y, T5Z, T62 * T63);
Tap = FNMS(T62, T5Z, T5Y * T63);
}
T65 = T5V + T64;
Tfi = Tao + Tap;
{
E T66, T67, T6a, T6c;
T66 = ri[WS(rs, 15)];
T67 = ii[WS(rs, 15)];
T68 = FMA(TV, T66, TZ * T67);
T9K = FNMS(TZ, T66, TV * T67);
T6a = ri[WS(rs, 47)];
T6c = ii[WS(rs, 47)];
T6d = FMA(T69, T6a, T6b * T6c);
T9L = FNMS(T6b, T6a, T69 * T6c);
}
T6e = T68 + T6d;
Tfj = T9K + T9L;
{
E T6i, T9O, T6n, T9P;
{
E T6g, T6h, T6k, T6m;
T6g = ri[WS(rs, 7)];
T6h = ii[WS(rs, 7)];
T6i = FMA(T1t, T6g, T1u * T6h);
T9O = FNMS(T1u, T6g, T1t * T6h);
T6k = ri[WS(rs, 39)];
T6m = ii[WS(rs, 39)];
T6n = FMA(T6j, T6k, T6l * T6m);
T9P = FNMS(T6l, T6k, T6j * T6m);
}
T6o = T6i + T6n;
Tf2 = T9O + T9P;
T9Q = T9O - T9P;
T9R = T6i - T6n;
}
{
E T6t, T9U, T6y, T9V;
{
E T6q, T6s, T6v, T6x;
T6q = ri[WS(rs, 55)];
T6s = ii[WS(rs, 55)];
T6t = FMA(T6p, T6q, T6r * T6s);
T9U = FNMS(T6r, T6q, T6p * T6s);
T6v = ri[WS(rs, 23)];
T6x = ii[WS(rs, 23)];
T6y = FMA(T6u, T6v, T6w * T6x);
T9V = FNMS(T6w, T6v, T6u * T6x);
}
T6z = T6t + T6y;
Tf3 = T9U + T9V;
T9T = T6t - T6y;
T9W = T9U - T9V;
}
{
E T6f, T6A, Tfk, Tfl;
T6f = T65 + T6e;
T6A = T6o + T6z;
T6B = T6f + T6A;
Th1 = T6f - T6A;
Tfk = Tfi - Tfj;
Tfl = T6z - T6o;
Tfm = Tfk - Tfl;
Tga = Tfk + Tfl;
}
{
E Th6, Th7, T9J, T9M;
Th6 = Tfi + Tfj;
Th7 = Tf2 + Tf3;
Th8 = Th6 - Th7;
ThI = Th6 + Th7;
T9J = T5V - T64;
T9M = T9K - T9L;
T9N = T9J - T9M;
Tcv = T9J + T9M;
}
{
E T9S, T9X, Tat, Tau;
T9S = T9Q - T9R;
T9X = T9T + T9W;
T9Y = KP707106781 * (T9S - T9X);
TcH = KP707106781 * (T9S + T9X);
Tat = T9T - T9W;
Tau = T9R + T9Q;
Tav = KP707106781 * (Tat - Tau);
Tcw = KP707106781 * (Tau + Tat);
}
{
E Tf1, Tf4, Taq, Tar;
Tf1 = T65 - T6e;
Tf4 = Tf2 - Tf3;
Tf5 = Tf1 - Tf4;
Tg7 = Tf1 + Tf4;
Taq = Tao - Tap;
Tar = T68 - T6d;
Tas = Taq + Tar;
TcG = Taq - Tar;
}
}
{
E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90;
E T93, T5a, TeT, T8V, T8Y;
{
E T4u, T4v, T4y, T4A;
T4u = ri[WS(rs, 1)];
T4v = ii[WS(rs, 1)];
T4w = FMA(T2, T4u, T5 * T4v);
T8Q = FNMS(T5, T4u, T2 * T4v);
T4y = ri[WS(rs, 33)];
T4A = ii[WS(rs, 33)];
T4B = FMA(T4x, T4y, T4z * T4A);
T8R = FNMS(T4z, T4y, T4x * T4A);
}
T4C = T4w + T4B;
TeA = T8Q + T8R;
{
E T4D, T4E, T4H, T4J;
T4D = ri[WS(rs, 17)];
T4E = ii[WS(rs, 17)];
T4F = FMA(T3V, T4D, T3Y * T4E);
T9w = FNMS(T3Y, T4D, T3V * T4E);
T4H = ri[WS(rs, 49)];
T4J = ii[WS(rs, 49)];
T4K = FMA(T4G, T4H, T4I * T4J);
T9x = FNMS(T4I, T4H, T4G * T4J);
}
T4L = T4F + T4K;
TeB = T9w + T9x;
{
E T4P, T91, T4U, T92;
{
E T4N, T4O, T4R, T4T;
T4N = ri[WS(rs, 9)];
T4O = ii[WS(rs, 9)];
T4P = FMA(T9, T4N, Te * T4O);
T91 = FNMS(Te, T4N, T9 * T4O);
T4R = ri[WS(rs, 41)];
T4T = ii[WS(rs, 41)];
T4U = FMA(T4Q, T4R, T4S * T4T);
T92 = FNMS(T4S, T4R, T4Q * T4T);
}
T4V = T4P + T4U;
TeS = T91 + T92;
T90 = T4P - T4U;
T93 = T91 - T92;
}
{
E T50, T8W, T59, T8X;
{
E T4X, T4Z, T54, T58;
T4X = ri[WS(rs, 57)];
T4Z = ii[WS(rs, 57)];
T50 = FMA(T4W, T4X, T4Y * T4Z);
T8W = FNMS(T4Y, T4X, T4W * T4Z);
T54 = ri[WS(rs, 25)];
T58 = ii[WS(rs, 25)];
T59 = FMA(T53, T54, T57 * T58);
T8X = FNMS(T57, T54, T53 * T58);
}
T5a = T50 + T59;
TeT = T8W + T8X;
T8V = T50 - T59;
T8Y = T8W - T8X;
}
{
E T4M, T5b, TeR, TeU;
T4M = T4C + T4L;
T5b = T4V + T5a;
T5c = T4M + T5b;
TgV = T4M - T5b;
TeR = T4C - T4L;
TeU = TeS - TeT;
TeV = TeR - TeU;
Tg0 = TeR + TeU;
}
{
E TgQ, TgR, T8S, T8T;
TgQ = TeA + TeB;
TgR = TeS + TeT;
TgS = TgQ - TgR;
ThD = TgQ + TgR;
T8S = T8Q - T8R;
T8T = T4F - T4K;
T8U = T8S + T8T;
Tcc = T8S - T8T;
}
{
E T8Z, T94, T9A, T9B;
T8Z = T8V - T8Y;
T94 = T90 + T93;
T95 = KP707106781 * (T8Z - T94);
Tco = KP707106781 * (T94 + T8Z);
T9A = T93 - T90;
T9B = T8V + T8Y;
T9C = KP707106781 * (T9A - T9B);
Tcd = KP707106781 * (T9A + T9B);
}
{
E TeC, TeD, T9v, T9y;
TeC = TeA - TeB;
TeD = T5a - T4V;
TeE = TeC - TeD;
Tg3 = TeC + TeD;
T9v = T4w - T4B;
T9y = T9w - T9x;
T9z = T9v - T9y;
Tcn = T9v + T9y;
}
}
{
E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97;
E T9e;
{
E T5f, T9i, T5k, T9j;
{
E T5d, T5e, T5h, T5j;
T5d = ri[WS(rs, 5)];
T5e = ii[WS(rs, 5)];
T5f = FMA(Tg, T5d, Tl * T5e);
T9i = FNMS(Tl, T5d, Tg * T5e);
T5h = ri[WS(rs, 37)];
T5j = ii[WS(rs, 37)];
T5k = FMA(T5g, T5h, T5i * T5j);
T9j = FNMS(T5i, T5h, T5g * T5j);
}
T5l = T5f + T5k;
TeL = T9i + T9j;
T9k = T9i - T9j;
T9n = T5f - T5k;
}
{
E T5J, T98, T5O, T99;
{
E T5H, T5I, T5L, T5N;
T5H = ri[WS(rs, 13)];
T5I = ii[WS(rs, 13)];
T5J = FMA(T1h, T5H, T1j * T5I);
T98 = FNMS(T1j, T5H, T1h * T5I);
T5L = ri[WS(rs, 45)];
T5N = ii[WS(rs, 45)];
T5O = FMA(T5K, T5L, T5M * T5N);
T99 = FNMS(T5M, T5L, T5K * T5N);
}
T5P = T5J + T5O;
TeH = T98 + T99;
T9a = T98 - T99;
T9f = T5J - T5O;
}
{
E T5o, T9o, T5t, T9p;
{
E T5m, T5n, T5q, T5s;
T5m = ri[WS(rs, 21)];
T5n = ii[WS(rs, 21)];
T5o = FMA(T3g, T5m, T3j * T5n);
T9o = FNMS(T3j, T5m, T3g * T5n);
T5q = ri[WS(rs, 53)];
T5s = ii[WS(rs, 53)];
T5t = FMA(T5p, T5q, T5r * T5s);
T9p = FNMS(T5r, T5q, T5p * T5s);
}
T5u = T5o + T5t;
TeM = T9o + T9p;
T9l = T5o - T5t;
T9q = T9o - T9p;
}
{
E T5A, T9c, T5F, T9d;
{
E T5x, T5z, T5C, T5E;
T5x = ri[WS(rs, 61)];
T5z = ii[WS(rs, 61)];
T5A = FMA(T5w, T5x, T5y * T5z);
T9c = FNMS(T5y, T5x, T5w * T5z);
T5C = ri[WS(rs, 29)];
T5E = ii[WS(rs, 29)];
T5F = FMA(T5B, T5C, T5D * T5E);
T9d = FNMS(T5D, T5C, T5B * T5E);
}
T5G = T5A + T5F;
TeG = T9c + T9d;
T97 = T5A - T5F;
T9e = T9c - T9d;
}
{
E T5v, T5Q, TeK, TeN;
T5v = T5l + T5u;
T5Q = T5G + T5P;
T5R = T5v + T5Q;
TgT = T5Q - T5v;
TeK = T5l - T5u;
TeN = TeL - TeM;
TeO = TeK + TeN;
TeW = TeN - TeK;
}
{
E TgW, TgX, T9b, T9g;
TgW = TeL + TeM;
TgX = TeG + TeH;
TgY = TgW - TgX;
ThE = TgW + TgX;
T9b = T97 - T9a;
T9g = T9e + T9f;
T9h = FNMS(KP923879532, T9g, KP382683432 * T9b);
T9F = FMA(KP382683432, T9g, KP923879532 * T9b);
}
{
E T9m, T9r, Tci, Tcj;
T9m = T9k + T9l;
T9r = T9n - T9q;
T9s = FMA(KP923879532, T9m, KP382683432 * T9r);
T9E = FNMS(KP923879532, T9r, KP382683432 * T9m);
Tci = T9k - T9l;
Tcj = T9n + T9q;
Tck = FMA(KP382683432, Tci, KP923879532 * Tcj);
Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci);
}
{
E TeF, TeI, Tcf, Tcg;
TeF = T5G - T5P;
TeI = TeG - TeH;
TeJ = TeF - TeI;
TeX = TeF + TeI;
Tcf = T97 + T9a;
Tcg = T9e - T9f;
Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf);
Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf);
}
}
{
E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad;
E Tag;
{
E T6E, Ta0, T6J, Ta1;
{
E T6C, T6D, T6G, T6I;
T6C = ri[WS(rs, 3)];
T6D = ii[WS(rs, 3)];
T6E = FMA(T3, T6C, T6 * T6D);
Ta0 = FNMS(T6, T6C, T3 * T6D);
T6G = ri[WS(rs, 35)];
T6I = ii[WS(rs, 35)];
T6J = FMA(T6F, T6G, T6H * T6I);
Ta1 = FNMS(T6H, T6G, T6F * T6I);
}
T6K = T6E + T6J;
Tf6 = Ta0 + Ta1;
Ta2 = Ta0 - Ta1;
Ta5 = T6E - T6J;
}
{
E T76, Tah, T7b, Tai;
{
E T74, T75, T78, T7a;
T74 = ri[WS(rs, 11)];
T75 = ii[WS(rs, 11)];
T76 = FMA(TA, T74, TE * T75);
Tah = FNMS(TE, T74, TA * T75);
T78 = ri[WS(rs, 43)];
T7a = ii[WS(rs, 43)];
T7b = FMA(T77, T78, T79 * T7a);
Tai = FNMS(T79, T78, T77 * T7a);
}
T7c = T76 + T7b;
Tfd = Tah + Tai;
Tae = T76 - T7b;
Taj = Tah - Tai;
}
{
E T6N, Ta6, T6S, Ta7;
{
E T6L, T6M, T6P, T6R;
T6L = ri[WS(rs, 19)];
T6M = ii[WS(rs, 19)];
T6N = FMA(T2z, T6L, T2C * T6M);
Ta6 = FNMS(T2C, T6L, T2z * T6M);
T6P = ri[WS(rs, 51)];
T6R = ii[WS(rs, 51)];
T6S = FMA(T6O, T6P, T6Q * T6R);
Ta7 = FNMS(T6Q, T6P, T6O * T6R);
}
T6T = T6N + T6S;
Tf7 = Ta6 + Ta7;
Ta3 = T6N - T6S;
Ta8 = Ta6 - Ta7;
}
{
E T6Z, Tab, T72, Tac;
{
E T6W, T6Y, T70, T71;
T6W = ri[WS(rs, 59)];
T6Y = ii[WS(rs, 59)];
T6Z = FMA(T6V, T6W, T6X * T6Y);
Tab = FNMS(T6X, T6W, T6V * T6Y);
T70 = ri[WS(rs, 27)];
T71 = ii[WS(rs, 27)];
T72 = FMA(Th, T70, Tm * T71);
Tac = FNMS(Tm, T70, Th * T71);
}
T73 = T6Z + T72;
Tfc = Tab + Tac;
Tad = Tab - Tac;
Tag = T6Z - T72;
}
{
E T6U, T7d, Tfb, Tfe;
T6U = T6K + T6T;
T7d = T73 + T7c;
T7e = T6U + T7d;
Th9 = T7d - T6U;
Tfb = T73 - T7c;
Tfe = Tfc - Tfd;
Tff = Tfb + Tfe;
Tfn = Tfb - Tfe;
}
{
E Th2, Th3, Ta4, Ta9;
Th2 = Tf6 + Tf7;
Th3 = Tfc + Tfd;
Th4 = Th2 - Th3;
ThJ = Th2 + Th3;
Ta4 = Ta2 + Ta3;
Ta9 = Ta5 - Ta8;
Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4);
Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9);
}
{
E Taf, Tak, TcB, TcC;
Taf = Tad + Tae;
Tak = Tag - Taj;
Tal = FMA(KP382683432, Taf, KP923879532 * Tak);
Tax = FNMS(KP923879532, Taf, KP382683432 * Tak);
TcB = Tad - Tae;
TcC = Tag + Taj;
TcD = FMA(KP923879532, TcB, KP382683432 * TcC);
TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC);
}
{
E Tf8, Tf9, Tcy, Tcz;
Tf8 = Tf6 - Tf7;
Tf9 = T6K - T6T;
Tfa = Tf8 - Tf9;
Tfo = Tf9 + Tf8;
Tcy = Ta2 - Ta3;
Tcz = Ta5 + Ta8;
TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy);
TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz);
}
}
{
E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA;
E ThW;
{
E T1L, T2K, ThS, ThT;
T1L = T17 + T1K;
T2K = T2e + T2J;
T2L = T1L + T2K;
Thx = T1L - T2K;
ThS = ThD + ThE;
ThT = ThI + ThJ;
ThU = ThS - ThT;
ThV = ThS + ThT;
}
{
E ThX, Ti4, T3C, T4r;
ThX = TgA + TgB;
Ti4 = ThY + Ti3;
Ti5 = ThX + Ti4;
Tib = Ti4 - ThX;
T3C = T36 + T3B;
T4r = T45 + T4q;
T4s = T3C + T4r;
Tia = T4r - T3C;
}
{
E T5S, T7f, ThC, ThF;
T5S = T5c + T5R;
T7f = T6B + T7e;
T7g = T5S + T7f;
Ti7 = T7f - T5S;
ThC = T5c - T5R;
ThF = ThD - ThE;
ThG = ThC + ThF;
ThO = ThF - ThC;
}
{
E ThH, ThK, Thy, Thz;
ThH = T6B - T7e;
ThK = ThI - ThJ;
ThL = ThH - ThK;
ThP = ThH + ThK;
Thy = TgE + TgF;
Thz = TgK + TgL;
ThA = Thy - Thz;
ThW = Thy + Thz;
}
{
E T4t, Ti6, ThR, Ti8;
T4t = T2L + T4s;
ri[WS(rs, 32)] = T4t - T7g;
ri[0] = T4t + T7g;
Ti6 = ThW + Ti5;
ii[0] = ThV + Ti6;
ii[WS(rs, 32)] = Ti6 - ThV;
ThR = T2L - T4s;
ri[WS(rs, 48)] = ThR - ThU;
ri[WS(rs, 16)] = ThR + ThU;
Ti8 = Ti5 - ThW;
ii[WS(rs, 16)] = Ti7 + Ti8;
ii[WS(rs, 48)] = Ti8 - Ti7;
}
{
E ThB, ThM, Ti9, Tic;
ThB = Thx + ThA;
ThM = KP707106781 * (ThG + ThL);
ri[WS(rs, 40)] = ThB - ThM;
ri[WS(rs, 8)] = ThB + ThM;
Ti9 = KP707106781 * (ThO + ThP);
Tic = Tia + Tib;
ii[WS(rs, 8)] = Ti9 + Tic;
ii[WS(rs, 40)] = Tic - Ti9;
}
{
E ThN, ThQ, Tid, Tie;
ThN = Thx - ThA;
ThQ = KP707106781 * (ThO - ThP);
ri[WS(rs, 56)] = ThN - ThQ;
ri[WS(rs, 24)] = ThN + ThQ;
Tid = KP707106781 * (ThL - ThG);
Tie = Tib - Tia;
ii[WS(rs, 24)] = Tid + Tie;
ii[WS(rs, 56)] = Tie - Tid;
}
}
{
E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb;
E Thf;
{
E Tgz, TgC, Thp, Thq;
Tgz = T17 - T1K;
TgC = TgA - TgB;
TgD = Tgz - TgC;
Thh = Tgz + TgC;
Thp = Th1 + Th4;
Thq = Th8 + Th9;
Thr = FNMS(KP382683432, Thq, KP923879532 * Thp);
Thv = FMA(KP923879532, Thq, KP382683432 * Thp);
}
{
E Tih, Tii, TgI, TgN;
Tih = T2J - T2e;
Tii = Ti3 - ThY;
Tij = Tih + Tii;
Tip = Tii - Tih;
TgI = TgG - TgH;
TgN = TgJ + TgM;
TgO = KP707106781 * (TgI - TgN);
Tig = KP707106781 * (TgI + TgN);
}
{
E TgU, TgZ, Thi, Thj;
TgU = TgS - TgT;
TgZ = TgV - TgY;
Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ);
The = FNMS(KP923879532, TgZ, KP382683432 * TgU);
Thi = TgH + TgG;
Thj = TgJ - TgM;
Thk = KP707106781 * (Thi + Thj);
Tio = KP707106781 * (Thj - Thi);
}
{
E Thm, Thn, Th5, Tha;
Thm = TgS + TgT;
Thn = TgV + TgY;
Tho = FMA(KP382683432, Thm, KP923879532 * Thn);
Thu = FNMS(KP382683432, Thn, KP923879532 * Thm);
Th5 = Th1 - Th4;
Tha = Th8 - Th9;
Thb = FNMS(KP923879532, Tha, KP382683432 * Th5);
Thf = FMA(KP382683432, Tha, KP923879532 * Th5);
}
{
E TgP, Thc, Tin, Tiq;
TgP = TgD + TgO;
Thc = Th0 + Thb;
ri[WS(rs, 44)] = TgP - Thc;
ri[WS(rs, 12)] = TgP + Thc;
Tin = The + Thf;
Tiq = Tio + Tip;
ii[WS(rs, 12)] = Tin + Tiq;
ii[WS(rs, 44)] = Tiq - Tin;
}
{
E Thd, Thg, Tir, Tis;
Thd = TgD - TgO;
Thg = The - Thf;
ri[WS(rs, 60)] = Thd - Thg;
ri[WS(rs, 28)] = Thd + Thg;
Tir = Thb - Th0;
Tis = Tip - Tio;
ii[WS(rs, 28)] = Tir + Tis;
ii[WS(rs, 60)] = Tis - Tir;
}
{
E Thl, Ths, Tif, Tik;
Thl = Thh + Thk;
Ths = Tho + Thr;
ri[WS(rs, 36)] = Thl - Ths;
ri[WS(rs, 4)] = Thl + Ths;
Tif = Thu + Thv;
Tik = Tig + Tij;
ii[WS(rs, 4)] = Tif + Tik;
ii[WS(rs, 36)] = Tik - Tif;
}
{
E Tht, Thw, Til, Tim;
Tht = Thh - Thk;
Thw = Thu - Thv;
ri[WS(rs, 52)] = Tht - Thw;
ri[WS(rs, 20)] = Tht + Thw;
Til = Thr - Tho;
Tim = Tij - Tig;
ii[WS(rs, 20)] = Til + Tim;
ii[WS(rs, 52)] = Tim - Til;
}
}
{
E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu;
E TfE;
{
E TdZ, Tea, Tfy, Tfz;
TdZ = TdV - TdY;
Tea = KP707106781 * (Te4 - Te9);
Teb = TdZ - Tea;
Tfx = TdZ + Tea;
{
E Tem, Tex, TiL, TiM;
Tem = FNMS(KP923879532, Tel, KP382683432 * Teg);
Tex = FMA(KP382683432, Ter, KP923879532 * Tew);
Tey = Tem - Tex;
TiK = Tem + Tex;
TiL = KP707106781 * (TfP - TfO);
TiM = Tix - Tiw;
TiN = TiL + TiM;
TiT = TiM - TiL;
}
Tfy = FMA(KP923879532, Teg, KP382683432 * Tel);
Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew);
TfA = Tfy + Tfz;
TiS = Tfz - Tfy;
{
E Tfh, TfF, Tfq, TfG, Tfg, Tfp;
Tfg = KP707106781 * (Tfa - Tff);
Tfh = Tf5 - Tfg;
TfF = Tf5 + Tfg;
Tfp = KP707106781 * (Tfn - Tfo);
Tfq = Tfm - Tfp;
TfG = Tfm + Tfp;
Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh);
TfL = FMA(KP831469612, TfG, KP555570233 * TfF);
Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh);
TfH = FNMS(KP555570233, TfG, KP831469612 * TfF);
}
{
E TeQ, TfC, TeZ, TfD, TeP, TeY;
TeP = KP707106781 * (TeJ - TeO);
TeQ = TeE - TeP;
TfC = TeE + TeP;
TeY = KP707106781 * (TeW - TeX);
TeZ = TeV - TeY;
TfD = TeV + TeY;
Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ);
TfK = FNMS(KP555570233, TfD, KP831469612 * TfC);
Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ);
TfE = FMA(KP555570233, TfC, KP831469612 * TfD);
}
}
{
E Tez, Tfs, TiR, TiU;
Tez = Teb + Tey;
Tfs = Tf0 + Tfr;
ri[WS(rs, 46)] = Tez - Tfs;
ri[WS(rs, 14)] = Tez + Tfs;
TiR = Tfu + Tfv;
TiU = TiS + TiT;
ii[WS(rs, 14)] = TiR + TiU;
ii[WS(rs, 46)] = TiU - TiR;
}
{
E Tft, Tfw, TiV, TiW;
Tft = Teb - Tey;
Tfw = Tfu - Tfv;
ri[WS(rs, 62)] = Tft - Tfw;
ri[WS(rs, 30)] = Tft + Tfw;
TiV = Tfr - Tf0;
TiW = TiT - TiS;
ii[WS(rs, 30)] = TiV + TiW;
ii[WS(rs, 62)] = TiW - TiV;
}
{
E TfB, TfI, TiJ, TiO;
TfB = Tfx + TfA;
TfI = TfE + TfH;
ri[WS(rs, 38)] = TfB - TfI;
ri[WS(rs, 6)] = TfB + TfI;
TiJ = TfK + TfL;
TiO = TiK + TiN;
ii[WS(rs, 6)] = TiJ + TiO;
ii[WS(rs, 38)] = TiO - TiJ;
}
{
E TfJ, TfM, TiP, TiQ;
TfJ = Tfx - TfA;
TfM = TfK - TfL;
ri[WS(rs, 54)] = TfJ - TfM;
ri[WS(rs, 22)] = TfJ + TfM;
TiP = TfH - TfE;
TiQ = TiN - TiK;
ii[WS(rs, 22)] = TiP + TiQ;
ii[WS(rs, 54)] = TiQ - TiP;
}
}
{
E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg;
E Tgq;
{
E TfN, TfQ, Tgk, Tgl;
TfN = TdV + TdY;
TfQ = KP707106781 * (TfO + TfP);
TfR = TfN - TfQ;
Tgj = TfN + TfQ;
{
E TfU, TfX, Tiv, Tiy;
TfU = FNMS(KP382683432, TfT, KP923879532 * TfS);
TfX = FMA(KP923879532, TfV, KP382683432 * TfW);
TfY = TfU - TfX;
Tiu = TfU + TfX;
Tiv = KP707106781 * (Te4 + Te9);
Tiy = Tiw + Tix;
Tiz = Tiv + Tiy;
TiF = Tiy - Tiv;
}
Tgk = FMA(KP382683432, TfS, KP923879532 * TfT);
Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW);
Tgm = Tgk + Tgl;
TiE = Tgl - Tgk;
{
E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb;
Tg8 = KP707106781 * (Tfo + Tfn);
Tg9 = Tg7 - Tg8;
Tgr = Tg7 + Tg8;
Tgb = KP707106781 * (Tfa + Tff);
Tgc = Tga - Tgb;
Tgs = Tga + Tgb;
Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9);
Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs);
Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc);
Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr);
}
{
E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4;
Tg1 = KP707106781 * (TeO + TeJ);
Tg2 = Tg0 - Tg1;
Tgo = Tg0 + Tg1;
Tg4 = KP707106781 * (TeW + TeX);
Tg5 = Tg3 - Tg4;
Tgp = Tg3 + Tg4;
Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5);
Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp);
Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5);
Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp);
}
}
{
E TfZ, Tge, TiD, TiG;
TfZ = TfR + TfY;
Tge = Tg6 + Tgd;
ri[WS(rs, 42)] = TfZ - Tge;
ri[WS(rs, 10)] = TfZ + Tge;
TiD = Tgg + Tgh;
TiG = TiE + TiF;
ii[WS(rs, 10)] = TiD + TiG;
ii[WS(rs, 42)] = TiG - TiD;
}
{
E Tgf, Tgi, TiH, TiI;
Tgf = TfR - TfY;
Tgi = Tgg - Tgh;
ri[WS(rs, 58)] = Tgf - Tgi;
ri[WS(rs, 26)] = Tgf + Tgi;
TiH = Tgd - Tg6;
TiI = TiF - TiE;
ii[WS(rs, 26)] = TiH + TiI;
ii[WS(rs, 58)] = TiI - TiH;
}
{
E Tgn, Tgu, Tit, TiA;
Tgn = Tgj + Tgm;
Tgu = Tgq + Tgt;
ri[WS(rs, 34)] = Tgn - Tgu;
ri[WS(rs, 2)] = Tgn + Tgu;
Tit = Tgw + Tgx;
TiA = Tiu + Tiz;
ii[WS(rs, 2)] = Tit + TiA;
ii[WS(rs, 34)] = TiA - Tit;
}
{
E Tgv, Tgy, TiB, TiC;
Tgv = Tgj - Tgm;
Tgy = Tgw - Tgx;
ri[WS(rs, 50)] = Tgv - Tgy;
ri[WS(rs, 18)] = Tgv + Tgy;
TiB = Tgt - Tgq;
TiC = Tiz - Tiu;
ii[WS(rs, 18)] = TiB + TiC;
ii[WS(rs, 50)] = TiC - TiB;
}
}
{
E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF;
E TaR;
{
E T7x, T7U, TjL, TjM;
T7x = T7l - T7w;
T7U = T7I - T7T;
T7V = T7x - T7U;
TaH = T7x + T7U;
TjL = TaZ - TaY;
TjM = Tjx - Tjw;
TjN = TjL + TjM;
TjT = TjM - TjL;
}
{
E T8m, TaI, T8N, TaJ;
{
E T8c, T8l, T8D, T8M;
T8c = T80 - T8b;
T8l = T8h - T8k;
T8m = FNMS(KP980785280, T8l, KP195090322 * T8c);
TaI = FMA(KP980785280, T8c, KP195090322 * T8l);
T8D = T8r - T8C;
T8M = T8I - T8L;
T8N = FMA(KP195090322, T8D, KP980785280 * T8M);
TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M);
}
T8O = T8m - T8N;
TjS = TaJ - TaI;
TaK = TaI + TaJ;
TjK = T8m + T8N;
}
{
E T9u, TaM, T9H, TaN;
{
E T96, T9t, T9D, T9G;
T96 = T8U - T95;
T9t = T9h - T9s;
T9u = T96 - T9t;
TaM = T96 + T9t;
T9D = T9z - T9C;
T9G = T9E - T9F;
T9H = T9D - T9G;
TaN = T9D + T9G;
}
T9I = FMA(KP995184726, T9u, KP098017140 * T9H);
TaU = FNMS(KP634393284, TaN, KP773010453 * TaM);
TaE = FNMS(KP995184726, T9H, KP098017140 * T9u);
TaO = FMA(KP634393284, TaM, KP773010453 * TaN);
}
{
E Tan, TaP, TaA, TaQ;
{
E T9Z, Tam, Taw, Taz;
T9Z = T9N - T9Y;
Tam = Taa - Tal;
Tan = T9Z - Tam;
TaP = T9Z + Tam;
Taw = Tas - Tav;
Taz = Tax - Tay;
TaA = Taw - Taz;
TaQ = Taw + Taz;
}
TaB = FNMS(KP995184726, TaA, KP098017140 * Tan);
TaV = FMA(KP773010453, TaQ, KP634393284 * TaP);
TaF = FMA(KP098017140, TaA, KP995184726 * Tan);
TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP);
}
{
E T8P, TaC, TjR, TjU;
T8P = T7V + T8O;
TaC = T9I + TaB;
ri[WS(rs, 47)] = T8P - TaC;
ri[WS(rs, 15)] = T8P + TaC;
TjR = TaE + TaF;
TjU = TjS + TjT;
ii[WS(rs, 15)] = TjR + TjU;
ii[WS(rs, 47)] = TjU - TjR;
}
{
E TaD, TaG, TjV, TjW;
TaD = T7V - T8O;
TaG = TaE - TaF;
ri[WS(rs, 63)] = TaD - TaG;
ri[WS(rs, 31)] = TaD + TaG;
TjV = TaB - T9I;
TjW = TjT - TjS;
ii[WS(rs, 31)] = TjV + TjW;
ii[WS(rs, 63)] = TjW - TjV;
}
{
E TaL, TaS, TjJ, TjO;
TaL = TaH + TaK;
TaS = TaO + TaR;
ri[WS(rs, 39)] = TaL - TaS;
ri[WS(rs, 7)] = TaL + TaS;
TjJ = TaU + TaV;
TjO = TjK + TjN;
ii[WS(rs, 7)] = TjJ + TjO;
ii[WS(rs, 39)] = TjO - TjJ;
}
{
E TaT, TaW, TjP, TjQ;
TaT = TaH - TaK;
TaW = TaU - TaV;
ri[WS(rs, 55)] = TaT - TaW;
ri[WS(rs, 23)] = TaT + TaW;
TjP = TaR - TaO;
TjQ = TjN - TjK;
ii[WS(rs, 23)] = TjP + TjQ;
ii[WS(rs, 55)] = TjQ - TjP;
}
}
{
E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR;
E Td3;
{
E TbN, TbU, Tjh, Tji;
TbN = TbJ - TbM;
TbU = TbQ - TbT;
TbV = TbN - TbU;
TcT = TbN + TbU;
Tjh = Tdb - Tda;
Tji = Tj3 - Tj0;
Tjj = Tjh + Tji;
Tjp = Tji - Tjh;
}
{
E Tc2, TcU, Tc9, TcV;
{
E TbY, Tc1, Tc5, Tc8;
TbY = TbW - TbX;
Tc1 = TbZ - Tc0;
Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY);
TcU = FMA(KP555570233, Tc1, KP831469612 * TbY);
Tc5 = Tc3 - Tc4;
Tc8 = Tc6 - Tc7;
Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8);
TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5);
}
Tca = Tc2 - Tc9;
Tjo = TcV - TcU;
TcW = TcU + TcV;
Tjg = Tc2 + Tc9;
}
{
E Tcm, TcY, Tct, TcZ;
{
E Tce, Tcl, Tcp, Tcs;
Tce = Tcc - Tcd;
Tcl = Tch - Tck;
Tcm = Tce - Tcl;
TcY = Tce + Tcl;
Tcp = Tcn - Tco;
Tcs = Tcq - Tcr;
Tct = Tcp - Tcs;
TcZ = Tcp + Tcs;
}
Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct);
Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY);
TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm);
Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ);
}
{
E TcF, Td1, TcM, Td2;
{
E Tcx, TcE, TcI, TcL;
Tcx = Tcv - Tcw;
TcE = TcA - TcD;
TcF = Tcx - TcE;
Td1 = Tcx + TcE;
TcI = TcG - TcH;
TcL = TcJ - TcK;
TcM = TcI - TcL;
Td2 = TcI + TcL;
}
TcN = FNMS(KP956940335, TcM, KP290284677 * TcF);
Td7 = FMA(KP881921264, Td2, KP471396736 * Td1);
TcR = FMA(KP290284677, TcM, KP956940335 * TcF);
Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1);
}
{
E Tcb, TcO, Tjn, Tjq;
Tcb = TbV + Tca;
TcO = Tcu + TcN;
ri[WS(rs, 45)] = Tcb - TcO;
ri[WS(rs, 13)] = Tcb + TcO;
Tjn = TcQ + TcR;
Tjq = Tjo + Tjp;
ii[WS(rs, 13)] = Tjn + Tjq;
ii[WS(rs, 45)] = Tjq - Tjn;
}
{
E TcP, TcS, Tjr, Tjs;
TcP = TbV - Tca;
TcS = TcQ - TcR;
ri[WS(rs, 61)] = TcP - TcS;
ri[WS(rs, 29)] = TcP + TcS;
Tjr = TcN - Tcu;
Tjs = Tjp - Tjo;
ii[WS(rs, 29)] = Tjr + Tjs;
ii[WS(rs, 61)] = Tjs - Tjr;
}
{
E TcX, Td4, Tjf, Tjk;
TcX = TcT + TcW;
Td4 = Td0 + Td3;
ri[WS(rs, 37)] = TcX - Td4;
ri[WS(rs, 5)] = TcX + Td4;
Tjf = Td6 + Td7;
Tjk = Tjg + Tjj;
ii[WS(rs, 5)] = Tjf + Tjk;
ii[WS(rs, 37)] = Tjk - Tjf;
}
{
E Td5, Td8, Tjl, Tjm;
Td5 = TcT - TcW;
Td8 = Td6 - Td7;
ri[WS(rs, 53)] = Td5 - Td8;
ri[WS(rs, 21)] = Td5 + Td8;
Tjl = Td3 - Td0;
Tjm = Tjj - Tjg;
ii[WS(rs, 21)] = Tjl + Tjm;
ii[WS(rs, 53)] = Tjm - Tjl;
}
}
{
E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD;
E TdP;
{
E Td9, Tdc, TiZ, Tj4;
Td9 = TbJ + TbM;
Tdc = Tda + Tdb;
Tdd = Td9 - Tdc;
TdF = Td9 + Tdc;
TiZ = TbQ + TbT;
Tj4 = Tj0 + Tj3;
Tj5 = TiZ + Tj4;
Tjb = Tj4 - TiZ;
}
{
E Tdg, TdG, Tdj, TdH;
{
E Tde, Tdf, Tdh, Tdi;
Tde = TbW + TbX;
Tdf = TbZ + Tc0;
Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde);
TdG = FMA(KP980785280, Tdf, KP195090322 * Tde);
Tdh = Tc3 + Tc4;
Tdi = Tc6 + Tc7;
Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi);
TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh);
}
Tdk = Tdg - Tdj;
Tja = TdH - TdG;
TdI = TdG + TdH;
TiY = Tdg + Tdj;
}
{
E Tdo, TdK, Tdr, TdL;
{
E Tdm, Tdn, Tdp, Tdq;
Tdm = Tcn + Tco;
Tdn = Tck + Tch;
Tdo = Tdm - Tdn;
TdK = Tdm + Tdn;
Tdp = Tcc + Tcd;
Tdq = Tcq + Tcr;
Tdr = Tdp - Tdq;
TdL = Tdp + Tdq;
}
Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr);
TdS = FNMS(KP098017140, TdK, KP995184726 * TdL);
TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr);
TdM = FMA(KP995184726, TdK, KP098017140 * TdL);
}
{
E Tdv, TdN, Tdy, TdO;
{
E Tdt, Tdu, Tdw, Tdx;
Tdt = Tcv + Tcw;
Tdu = TcK + TcJ;
Tdv = Tdt - Tdu;
TdN = Tdt + Tdu;
Tdw = TcG + TcH;
Tdx = TcA + TcD;
Tdy = Tdw - Tdx;
TdO = Tdw + Tdx;
}
Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv);
TdT = FMA(KP098017140, TdN, KP995184726 * TdO);
TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy);
TdP = FNMS(KP098017140, TdO, KP995184726 * TdN);
}
{
E Tdl, TdA, Tj9, Tjc;
Tdl = Tdd + Tdk;
TdA = Tds + Tdz;
ri[WS(rs, 41)] = Tdl - TdA;
ri[WS(rs, 9)] = Tdl + TdA;
Tj9 = TdC + TdD;
Tjc = Tja + Tjb;
ii[WS(rs, 9)] = Tj9 + Tjc;
ii[WS(rs, 41)] = Tjc - Tj9;
}
{
E TdB, TdE, Tjd, Tje;
TdB = Tdd - Tdk;
TdE = TdC - TdD;
ri[WS(rs, 57)] = TdB - TdE;
ri[WS(rs, 25)] = TdB + TdE;
Tjd = Tdz - Tds;
Tje = Tjb - Tja;
ii[WS(rs, 25)] = Tjd + Tje;
ii[WS(rs, 57)] = Tje - Tjd;
}
{
E TdJ, TdQ, TiX, Tj6;
TdJ = TdF + TdI;
TdQ = TdM + TdP;
ri[WS(rs, 33)] = TdJ - TdQ;
ri[WS(rs, 1)] = TdJ + TdQ;
TiX = TdS + TdT;
Tj6 = TiY + Tj5;
ii[WS(rs, 1)] = TiX + Tj6;
ii[WS(rs, 33)] = Tj6 - TiX;
}
{
E TdR, TdU, Tj7, Tj8;
TdR = TdF - TdI;
TdU = TdS - TdT;
ri[WS(rs, 49)] = TdR - TdU;
ri[WS(rs, 17)] = TdR + TdU;
Tj7 = TdP - TdM;
Tj8 = Tj5 - TiY;
ii[WS(rs, 17)] = Tj7 + Tj8;
ii[WS(rs, 49)] = Tj8 - Tj7;
}
}
{
E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr;
E TbD;
{
E TaX, Tb0, Tjv, Tjy;
TaX = T7l + T7w;
Tb0 = TaY + TaZ;
Tb1 = TaX - Tb0;
Tbt = TaX + Tb0;
Tjv = T7I + T7T;
Tjy = Tjw + Tjx;
Tjz = Tjv + Tjy;
TjF = Tjy - Tjv;
}
{
E Tb4, Tbu, Tb7, Tbv;
{
E Tb2, Tb3, Tb5, Tb6;
Tb2 = T80 + T8b;
Tb3 = T8h + T8k;
Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2);
Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3);
Tb5 = T8r + T8C;
Tb6 = T8I + T8L;
Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6);
Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6);
}
Tb8 = Tb4 - Tb7;
TjE = Tbv - Tbu;
Tbw = Tbu + Tbv;
Tju = Tb4 + Tb7;
}
{
E Tbc, Tby, Tbf, Tbz;
{
E Tba, Tbb, Tbd, Tbe;
Tba = T9z + T9C;
Tbb = T9s + T9h;
Tbc = Tba - Tbb;
Tby = Tba + Tbb;
Tbd = T8U + T95;
Tbe = T9E + T9F;
Tbf = Tbd - Tbe;
Tbz = Tbd + Tbe;
}
Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf);
TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz);
Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf);
TbA = FMA(KP956940335, Tby, KP290284677 * Tbz);
}
{
E Tbj, TbB, Tbm, TbC;
{
E Tbh, Tbi, Tbk, Tbl;
Tbh = T9N + T9Y;
Tbi = Tay + Tax;
Tbj = Tbh - Tbi;
TbB = Tbh + Tbi;
Tbk = Tas + Tav;
Tbl = Taa + Tal;
Tbm = Tbk - Tbl;
TbC = Tbk + Tbl;
}
Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj);
TbH = FMA(KP290284677, TbB, KP956940335 * TbC);
Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm);
TbD = FNMS(KP290284677, TbC, KP956940335 * TbB);
}
{
E Tb9, Tbo, TjD, TjG;
Tb9 = Tb1 + Tb8;
Tbo = Tbg + Tbn;
ri[WS(rs, 43)] = Tb9 - Tbo;
ri[WS(rs, 11)] = Tb9 + Tbo;
TjD = Tbq + Tbr;
TjG = TjE + TjF;
ii[WS(rs, 11)] = TjD + TjG;
ii[WS(rs, 43)] = TjG - TjD;
}
{
E Tbp, Tbs, TjH, TjI;
Tbp = Tb1 - Tb8;
Tbs = Tbq - Tbr;
ri[WS(rs, 59)] = Tbp - Tbs;
ri[WS(rs, 27)] = Tbp + Tbs;
TjH = Tbn - Tbg;
TjI = TjF - TjE;
ii[WS(rs, 27)] = TjH + TjI;
ii[WS(rs, 59)] = TjI - TjH;
}
{
E Tbx, TbE, Tjt, TjA;
Tbx = Tbt + Tbw;
TbE = TbA + TbD;
ri[WS(rs, 35)] = Tbx - TbE;
ri[WS(rs, 3)] = Tbx + TbE;
Tjt = TbG + TbH;
TjA = Tju + Tjz;
ii[WS(rs, 3)] = Tjt + TjA;
ii[WS(rs, 35)] = TjA - Tjt;
}
{
E TbF, TbI, TjB, TjC;
TbF = Tbt - Tbw;
TbI = TbG - TbH;
ri[WS(rs, 51)] = TbF - TbI;
ri[WS(rs, 19)] = TbF + TbI;
TjB = TbD - TbA;
TjC = Tjz - Tju;
ii[WS(rs, 19)] = TjB + TjC;
ii[WS(rs, 51)] = TjC - TjB;
}
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_CEXP, 0, 1 },
{ TW_CEXP, 0, 3 },
{ TW_CEXP, 0, 9 },
{ TW_CEXP, 0, 27 },
{ TW_CEXP, 0, 63 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, { 880, 386, 274, 0 }, 0, 0, 0 };
void X(codelet_t2_64) (planner *p) {
X(kdft_dit_register) (p, t2_64, &desc);
}
#endif