mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-01 18:42:40 +00:00
195 lines
6.1 KiB
C
195 lines
6.1 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 32 FP additions, 18 FP multiplications,
|
||
|
* (or, 14 additions, 0 multiplications, 18 fused multiply/add),
|
||
|
* 21 stack variables, 4 constants, and 20 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
|
||
|
E T1, Tl, T8, Tt, Ta, Ts, Te, Tq, Th, To;
|
||
|
T1 = ri[0];
|
||
|
Tl = ii[0];
|
||
|
{
|
||
|
E T2, T3, T4, T5, T6, T7;
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 4)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 3)];
|
||
|
T7 = T5 + T6;
|
||
|
T8 = T4 + T7;
|
||
|
Tt = T5 - T6;
|
||
|
Ta = T4 - T7;
|
||
|
Ts = T2 - T3;
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Tm, Tf, Tg, Tn;
|
||
|
Tc = ii[WS(is, 1)];
|
||
|
Td = ii[WS(is, 4)];
|
||
|
Tm = Tc + Td;
|
||
|
Tf = ii[WS(is, 2)];
|
||
|
Tg = ii[WS(is, 3)];
|
||
|
Tn = Tf + Tg;
|
||
|
Te = Tc - Td;
|
||
|
Tq = Tm - Tn;
|
||
|
Th = Tf - Tg;
|
||
|
To = Tm + Tn;
|
||
|
}
|
||
|
ro[0] = T1 + T8;
|
||
|
io[0] = Tl + To;
|
||
|
{
|
||
|
E Ti, Tk, Tb, Tj, T9;
|
||
|
Ti = FMA(KP618033988, Th, Te);
|
||
|
Tk = FNMS(KP618033988, Te, Th);
|
||
|
T9 = FNMS(KP250000000, T8, T1);
|
||
|
Tb = FMA(KP559016994, Ta, T9);
|
||
|
Tj = FNMS(KP559016994, Ta, T9);
|
||
|
ro[WS(os, 4)] = FNMS(KP951056516, Ti, Tb);
|
||
|
ro[WS(os, 3)] = FMA(KP951056516, Tk, Tj);
|
||
|
ro[WS(os, 1)] = FMA(KP951056516, Ti, Tb);
|
||
|
ro[WS(os, 2)] = FNMS(KP951056516, Tk, Tj);
|
||
|
}
|
||
|
{
|
||
|
E Tu, Tw, Tr, Tv, Tp;
|
||
|
Tu = FMA(KP618033988, Tt, Ts);
|
||
|
Tw = FNMS(KP618033988, Ts, Tt);
|
||
|
Tp = FNMS(KP250000000, To, Tl);
|
||
|
Tr = FMA(KP559016994, Tq, Tp);
|
||
|
Tv = FNMS(KP559016994, Tq, Tp);
|
||
|
io[WS(os, 1)] = FNMS(KP951056516, Tu, Tr);
|
||
|
io[WS(os, 3)] = FNMS(KP951056516, Tw, Tv);
|
||
|
io[WS(os, 4)] = FMA(KP951056516, Tu, Tr);
|
||
|
io[WS(os, 2)] = FMA(KP951056516, Tw, Tv);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 5, "n1_5", { 14, 0, 18, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 5 -name n1_5 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 32 FP additions, 12 FP multiplications,
|
||
|
* (or, 26 additions, 6 multiplications, 6 fused multiply/add),
|
||
|
* 21 stack variables, 4 constants, and 20 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_5(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
||
|
DK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
|
||
|
E T1, To, T8, Tt, T9, Ts, Te, Tp, Th, Tn;
|
||
|
T1 = ri[0];
|
||
|
To = ii[0];
|
||
|
{
|
||
|
E T2, T3, T4, T5, T6, T7;
|
||
|
T2 = ri[WS(is, 1)];
|
||
|
T3 = ri[WS(is, 4)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = ri[WS(is, 2)];
|
||
|
T6 = ri[WS(is, 3)];
|
||
|
T7 = T5 + T6;
|
||
|
T8 = T4 + T7;
|
||
|
Tt = T5 - T6;
|
||
|
T9 = KP559016994 * (T4 - T7);
|
||
|
Ts = T2 - T3;
|
||
|
}
|
||
|
{
|
||
|
E Tc, Td, Tl, Tf, Tg, Tm;
|
||
|
Tc = ii[WS(is, 1)];
|
||
|
Td = ii[WS(is, 4)];
|
||
|
Tl = Tc + Td;
|
||
|
Tf = ii[WS(is, 2)];
|
||
|
Tg = ii[WS(is, 3)];
|
||
|
Tm = Tf + Tg;
|
||
|
Te = Tc - Td;
|
||
|
Tp = Tl + Tm;
|
||
|
Th = Tf - Tg;
|
||
|
Tn = KP559016994 * (Tl - Tm);
|
||
|
}
|
||
|
ro[0] = T1 + T8;
|
||
|
io[0] = To + Tp;
|
||
|
{
|
||
|
E Ti, Tk, Tb, Tj, Ta;
|
||
|
Ti = FMA(KP951056516, Te, KP587785252 * Th);
|
||
|
Tk = FNMS(KP587785252, Te, KP951056516 * Th);
|
||
|
Ta = FNMS(KP250000000, T8, T1);
|
||
|
Tb = T9 + Ta;
|
||
|
Tj = Ta - T9;
|
||
|
ro[WS(os, 4)] = Tb - Ti;
|
||
|
ro[WS(os, 3)] = Tj + Tk;
|
||
|
ro[WS(os, 1)] = Tb + Ti;
|
||
|
ro[WS(os, 2)] = Tj - Tk;
|
||
|
}
|
||
|
{
|
||
|
E Tu, Tv, Tr, Tw, Tq;
|
||
|
Tu = FMA(KP951056516, Ts, KP587785252 * Tt);
|
||
|
Tv = FNMS(KP587785252, Ts, KP951056516 * Tt);
|
||
|
Tq = FNMS(KP250000000, Tp, To);
|
||
|
Tr = Tn + Tq;
|
||
|
Tw = Tq - Tn;
|
||
|
io[WS(os, 1)] = Tr - Tu;
|
||
|
io[WS(os, 3)] = Tw - Tv;
|
||
|
io[WS(os, 4)] = Tu + Tr;
|
||
|
io[WS(os, 2)] = Tv + Tw;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 5, "n1_5", { 26, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_5) (planner *p) { X(kdft_register) (p, n1_5, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|