furnace/extern/fftw/dft/scalar/codelets/t1_6.c

296 lines
7.6 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:44:27 EDT 2021 */
#include "dft/codelet-dft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */
/*
* This function contains 46 FP additions, 32 FP multiplications,
* (or, 24 additions, 10 multiplications, 22 fused multiply/add),
* 31 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
{
INT m;
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
E T1, TX, T7, TW, Tl, TR, TB, TJ, Ty, TS, TC, TO;
T1 = ri[0];
TX = ii[0];
{
E T3, T6, T4, TV, T2, T5;
T3 = ri[WS(rs, 3)];
T6 = ii[WS(rs, 3)];
T2 = W[4];
T4 = T2 * T3;
TV = T2 * T6;
T5 = W[5];
T7 = FMA(T5, T6, T4);
TW = FNMS(T5, T3, TV);
}
{
E Ta, Td, Tb, TF, Tg, Tj, Th, TH, T9, Tf;
Ta = ri[WS(rs, 2)];
Td = ii[WS(rs, 2)];
T9 = W[2];
Tb = T9 * Ta;
TF = T9 * Td;
Tg = ri[WS(rs, 5)];
Tj = ii[WS(rs, 5)];
Tf = W[8];
Th = Tf * Tg;
TH = Tf * Tj;
{
E Te, TG, Tk, TI, Tc, Ti;
Tc = W[3];
Te = FMA(Tc, Td, Tb);
TG = FNMS(Tc, Ta, TF);
Ti = W[9];
Tk = FMA(Ti, Tj, Th);
TI = FNMS(Ti, Tg, TH);
Tl = Te - Tk;
TR = TG + TI;
TB = Te + Tk;
TJ = TG - TI;
}
}
{
E Tn, Tq, To, TK, Tt, Tw, Tu, TM, Tm, Ts;
Tn = ri[WS(rs, 4)];
Tq = ii[WS(rs, 4)];
Tm = W[6];
To = Tm * Tn;
TK = Tm * Tq;
Tt = ri[WS(rs, 1)];
Tw = ii[WS(rs, 1)];
Ts = W[0];
Tu = Ts * Tt;
TM = Ts * Tw;
{
E Tr, TL, Tx, TN, Tp, Tv;
Tp = W[7];
Tr = FMA(Tp, Tq, To);
TL = FNMS(Tp, Tn, TK);
Tv = W[1];
Tx = FMA(Tv, Tw, Tu);
TN = FNMS(Tv, Tt, TM);
Ty = Tr - Tx;
TS = TL + TN;
TC = Tr + Tx;
TO = TL - TN;
}
}
{
E TP, T8, Tz, TE;
TP = TJ - TO;
T8 = T1 - T7;
Tz = Tl + Ty;
TE = FNMS(KP500000000, Tz, T8);
ri[WS(rs, 3)] = T8 + Tz;
ri[WS(rs, 1)] = FMA(KP866025403, TP, TE);
ri[WS(rs, 5)] = FNMS(KP866025403, TP, TE);
}
{
E T14, T11, T12, T13;
T14 = Ty - Tl;
T11 = TX - TW;
T12 = TJ + TO;
T13 = FNMS(KP500000000, T12, T11);
ii[WS(rs, 1)] = FMA(KP866025403, T14, T13);
ii[WS(rs, 3)] = T12 + T11;
ii[WS(rs, 5)] = FNMS(KP866025403, T14, T13);
}
{
E TT, TA, TD, TQ;
TT = TR - TS;
TA = T1 + T7;
TD = TB + TC;
TQ = FNMS(KP500000000, TD, TA);
ri[0] = TA + TD;
ri[WS(rs, 4)] = FMA(KP866025403, TT, TQ);
ri[WS(rs, 2)] = FNMS(KP866025403, TT, TQ);
}
{
E T10, TU, TY, TZ;
T10 = TC - TB;
TU = TR + TS;
TY = TW + TX;
TZ = FNMS(KP500000000, TU, TY);
ii[0] = TU + TY;
ii[WS(rs, 4)] = FMA(KP866025403, T10, TZ);
ii[WS(rs, 2)] = FNMS(KP866025403, T10, TZ);
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 6 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 24, 10, 22, 0 }, 0, 0, 0 };
void X(codelet_t1_6) (planner *p) {
X(kdft_dit_register) (p, t1_6, &desc);
}
#else
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */
/*
* This function contains 46 FP additions, 28 FP multiplications,
* (or, 32 additions, 14 multiplications, 14 fused multiply/add),
* 23 stack variables, 2 constants, and 24 memory accesses
*/
#include "dft/scalar/t.h"
static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
{
INT m;
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC;
{
E T1, TN, T6, TM;
T1 = ri[0];
TN = ii[0];
{
E T3, T5, T2, T4;
T3 = ri[WS(rs, 3)];
T5 = ii[WS(rs, 3)];
T2 = W[4];
T4 = W[5];
T6 = FMA(T2, T3, T4 * T5);
TM = FNMS(T4, T3, T2 * T5);
}
T7 = T1 - T6;
TS = TN - TM;
Tv = T1 + T6;
TO = TM + TN;
}
{
E Tn, TD, Ts, TE;
{
E Tk, Tm, Tj, Tl;
Tk = ri[WS(rs, 4)];
Tm = ii[WS(rs, 4)];
Tj = W[6];
Tl = W[7];
Tn = FMA(Tj, Tk, Tl * Tm);
TD = FNMS(Tl, Tk, Tj * Tm);
}
{
E Tp, Tr, To, Tq;
Tp = ri[WS(rs, 1)];
Tr = ii[WS(rs, 1)];
To = W[0];
Tq = W[1];
Ts = FMA(To, Tp, Tq * Tr);
TE = FNMS(Tq, Tp, To * Tr);
}
Tt = Tn - Ts;
TJ = TD + TE;
Tx = Tn + Ts;
TF = TD - TE;
}
{
E Tc, TA, Th, TB;
{
E T9, Tb, T8, Ta;
T9 = ri[WS(rs, 2)];
Tb = ii[WS(rs, 2)];
T8 = W[2];
Ta = W[3];
Tc = FMA(T8, T9, Ta * Tb);
TA = FNMS(Ta, T9, T8 * Tb);
}
{
E Te, Tg, Td, Tf;
Te = ri[WS(rs, 5)];
Tg = ii[WS(rs, 5)];
Td = W[8];
Tf = W[9];
Th = FMA(Td, Te, Tf * Tg);
TB = FNMS(Tf, Te, Td * Tg);
}
Ti = Tc - Th;
TI = TA + TB;
Tw = Tc + Th;
TC = TA - TB;
}
{
E TG, Tu, Tz, TR, TT, TU;
TG = KP866025403 * (TC - TF);
Tu = Ti + Tt;
Tz = FNMS(KP500000000, Tu, T7);
ri[WS(rs, 3)] = T7 + Tu;
ri[WS(rs, 1)] = Tz + TG;
ri[WS(rs, 5)] = Tz - TG;
TR = KP866025403 * (Tt - Ti);
TT = TC + TF;
TU = FNMS(KP500000000, TT, TS);
ii[WS(rs, 1)] = TR + TU;
ii[WS(rs, 3)] = TT + TS;
ii[WS(rs, 5)] = TU - TR;
}
{
E TK, Ty, TH, TQ, TL, TP;
TK = KP866025403 * (TI - TJ);
Ty = Tw + Tx;
TH = FNMS(KP500000000, Ty, Tv);
ri[0] = Tv + Ty;
ri[WS(rs, 4)] = TH + TK;
ri[WS(rs, 2)] = TH - TK;
TQ = KP866025403 * (Tx - Tw);
TL = TI + TJ;
TP = FNMS(KP500000000, TL, TO);
ii[0] = TL + TO;
ii[WS(rs, 4)] = TQ + TP;
ii[WS(rs, 2)] = TP - TQ;
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 0, 6 },
{ TW_NEXT, 1, 0 }
};
static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 32, 14, 14, 0 }, 0, 0, 0 };
void X(codelet_t1_6) (planner *p) {
X(kdft_dit_register) (p, t1_6, &desc);
}
#endif