mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-22 00:10:27 +00:00
178 lines
5.2 KiB
C
178 lines
5.2 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "verify.h"
|
||
|
|
||
|
/* copy A into B, using output stride of A and input stride of B */
|
||
|
typedef struct {
|
||
|
dotens2_closure k;
|
||
|
R *ra; R *ia;
|
||
|
R *rb; R *ib;
|
||
|
int scalea, scaleb;
|
||
|
} cpy_closure;
|
||
|
|
||
|
static void cpy0(dotens2_closure *k_,
|
||
|
int indxa, int ondxa, int indxb, int ondxb)
|
||
|
{
|
||
|
cpy_closure *k = (cpy_closure *)k_;
|
||
|
k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
|
||
|
k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
|
||
|
UNUSED(indxa); UNUSED(ondxb);
|
||
|
}
|
||
|
|
||
|
static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
|
||
|
R *rb, R *ib, const bench_tensor *szb, int scaleb)
|
||
|
{
|
||
|
cpy_closure k;
|
||
|
k.k.apply = cpy0;
|
||
|
k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
|
||
|
k.scalea = scalea; k.scaleb = scaleb;
|
||
|
bench_dotens2(sza, szb, &k.k);
|
||
|
}
|
||
|
|
||
|
typedef struct {
|
||
|
dofft_closure k;
|
||
|
bench_problem *p;
|
||
|
} dofft_dft_closure;
|
||
|
|
||
|
static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
|
||
|
{
|
||
|
dofft_dft_closure *k = (dofft_dft_closure *)k_;
|
||
|
bench_problem *p = k->p;
|
||
|
bench_tensor *totalsz, *pckdsz;
|
||
|
bench_tensor *totalsz_swap, *pckdsz_swap;
|
||
|
bench_real *ri, *ii, *ro, *io;
|
||
|
int totalscale;
|
||
|
|
||
|
totalsz = tensor_append(p->vecsz, p->sz);
|
||
|
pckdsz = verify_pack(totalsz, 2);
|
||
|
ri = (bench_real *) p->in;
|
||
|
ro = (bench_real *) p->out;
|
||
|
|
||
|
totalsz_swap = tensor_copy_swapio(totalsz);
|
||
|
pckdsz_swap = tensor_copy_swapio(pckdsz);
|
||
|
|
||
|
/* confusion: the stride is the distance between complex elements
|
||
|
when using interleaved format, but it is the distance between
|
||
|
real elements when using split format */
|
||
|
if (p->split) {
|
||
|
ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
|
||
|
io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
|
||
|
totalscale = 1;
|
||
|
} else {
|
||
|
ii = p->ini ? (bench_real *) p->ini : ri + 1;
|
||
|
io = p->outi ? (bench_real *) p->outi : ro + 1;
|
||
|
totalscale = 2;
|
||
|
}
|
||
|
|
||
|
cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
|
||
|
ri, ii, totalsz, totalscale);
|
||
|
after_problem_ccopy_from(p, ri, ii);
|
||
|
doit(1, p);
|
||
|
after_problem_ccopy_to(p, ro, io);
|
||
|
if (k->k.recopy_input)
|
||
|
cpy(ri, ii, totalsz_swap, totalscale,
|
||
|
&c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
|
||
|
cpy(ro, io, totalsz, totalscale,
|
||
|
&c_re(out[0]), &c_im(out[0]), pckdsz, 1);
|
||
|
|
||
|
tensor_destroy(totalsz);
|
||
|
tensor_destroy(pckdsz);
|
||
|
tensor_destroy(totalsz_swap);
|
||
|
tensor_destroy(pckdsz_swap);
|
||
|
}
|
||
|
|
||
|
void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
|
||
|
{
|
||
|
C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
|
||
|
int n, vecn, N;
|
||
|
dofft_dft_closure k;
|
||
|
|
||
|
BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
|
||
|
|
||
|
k.k.apply = dft_apply;
|
||
|
k.k.recopy_input = 0;
|
||
|
k.p = p;
|
||
|
|
||
|
if (rounds == 0)
|
||
|
rounds = 20; /* default value */
|
||
|
|
||
|
n = tensor_sz(p->sz);
|
||
|
vecn = tensor_sz(p->vecsz);
|
||
|
N = n * vecn;
|
||
|
|
||
|
inA = (C *) bench_malloc(N * sizeof(C));
|
||
|
inB = (C *) bench_malloc(N * sizeof(C));
|
||
|
inC = (C *) bench_malloc(N * sizeof(C));
|
||
|
outA = (C *) bench_malloc(N * sizeof(C));
|
||
|
outB = (C *) bench_malloc(N * sizeof(C));
|
||
|
outC = (C *) bench_malloc(N * sizeof(C));
|
||
|
tmp = (C *) bench_malloc(N * sizeof(C));
|
||
|
|
||
|
e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,
|
||
|
tmp, rounds, tol);
|
||
|
e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
|
||
|
tmp, rounds, tol);
|
||
|
|
||
|
e->s = 0.0;
|
||
|
e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
|
||
|
inA, inB, outA, outB,
|
||
|
tmp, rounds, tol, TIME_SHIFT));
|
||
|
e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
|
||
|
inA, inB, outA, outB,
|
||
|
tmp, rounds, tol, FREQ_SHIFT));
|
||
|
|
||
|
if (!p->in_place && !p->destroy_input)
|
||
|
preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
|
||
|
|
||
|
bench_free(tmp);
|
||
|
bench_free(outC);
|
||
|
bench_free(outB);
|
||
|
bench_free(outA);
|
||
|
bench_free(inC);
|
||
|
bench_free(inB);
|
||
|
bench_free(inA);
|
||
|
}
|
||
|
|
||
|
|
||
|
void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
|
||
|
double t[6])
|
||
|
{
|
||
|
dofft_dft_closure k;
|
||
|
int n;
|
||
|
C *a, *b;
|
||
|
|
||
|
BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
|
||
|
BENCH_ASSERT(p->sz->rnk == 1);
|
||
|
BENCH_ASSERT(p->vecsz->rnk == 0);
|
||
|
|
||
|
k.k.apply = dft_apply;
|
||
|
k.k.recopy_input = 0;
|
||
|
k.p = p;
|
||
|
n = tensor_sz(p->sz);
|
||
|
|
||
|
a = (C *) bench_malloc(n * sizeof(C));
|
||
|
b = (C *) bench_malloc(n * sizeof(C));
|
||
|
accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
|
||
|
bench_free(b);
|
||
|
bench_free(a);
|
||
|
}
|