furnace/extern/fftw/rdft/scalar/r2cb/hc2cbdft_16.c

893 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* This file was automatically generated --- DO NOT EDIT */
/* Generated on Tue Sep 14 10:47:12 EDT 2021 */
#include "rdft/codelet-rdft.h"
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */
/*
* This function contains 206 FP additions, 100 FP multiplications,
* (or, 136 additions, 30 multiplications, 70 fused multiply/add),
* 66 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP414213562, +0.414213562373095048801688724209698078569671875);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
E Tf, T20, T32, T3Q, T3f, T3V, TN, T2a, T1m, T2f, T2G, T3G, T2T, T3L, T1F;
E T26, T2J, T2M, T2N, T2U, T2V, T3H, Tu, T25, T3i, T3R, T1a, T2g, T1y, T21;
E T39, T3W, T1p, T2b;
{
E T3, T1e, TA, T1C, T6, Tx, T1h, T1D, Td, T1A, TL, T1k, Ta, T1z, TG;
E T1j;
{
E T1, T2, T1f, T1g;
T1 = Rp[0];
T2 = Rm[WS(rs, 7)];
T3 = T1 + T2;
T1e = T1 - T2;
{
E Ty, Tz, T4, T5;
Ty = Ip[0];
Tz = Im[WS(rs, 7)];
TA = Ty + Tz;
T1C = Ty - Tz;
T4 = Rp[WS(rs, 4)];
T5 = Rm[WS(rs, 3)];
T6 = T4 + T5;
Tx = T4 - T5;
}
T1f = Ip[WS(rs, 4)];
T1g = Im[WS(rs, 3)];
T1h = T1f + T1g;
T1D = T1f - T1g;
{
E Tb, Tc, TH, TI, TJ, TK;
Tb = Rm[WS(rs, 1)];
Tc = Rp[WS(rs, 6)];
TH = Tb - Tc;
TI = Im[WS(rs, 1)];
TJ = Ip[WS(rs, 6)];
TK = TI + TJ;
Td = Tb + Tc;
T1A = TJ - TI;
TL = TH + TK;
T1k = TH - TK;
}
{
E T8, T9, TC, TD, TE, TF;
T8 = Rp[WS(rs, 2)];
T9 = Rm[WS(rs, 5)];
TC = T8 - T9;
TD = Ip[WS(rs, 2)];
TE = Im[WS(rs, 5)];
TF = TD + TE;
Ta = T8 + T9;
T1z = TD - TE;
TG = TC + TF;
T1j = TC - TF;
}
}
{
E T7, Te, T30, T31;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
T20 = T7 - Te;
T30 = TA - Tx;
T31 = T1j - T1k;
T32 = FMA(KP707106781, T31, T30);
T3Q = FNMS(KP707106781, T31, T30);
}
{
E T3d, T3e, TB, TM;
T3d = T1e + T1h;
T3e = TG + TL;
T3f = FNMS(KP707106781, T3e, T3d);
T3V = FMA(KP707106781, T3e, T3d);
TB = Tx + TA;
TM = TG - TL;
TN = FMA(KP707106781, TM, TB);
T2a = FNMS(KP707106781, TM, TB);
}
{
E T1i, T1l, T2E, T2F;
T1i = T1e - T1h;
T1l = T1j + T1k;
T1m = FMA(KP707106781, T1l, T1i);
T2f = FNMS(KP707106781, T1l, T1i);
T2E = T3 - T6;
T2F = T1A - T1z;
T2G = T2E + T2F;
T3G = T2E - T2F;
}
{
E T2R, T2S, T1B, T1E;
T2R = Ta - Td;
T2S = T1C - T1D;
T2T = T2R + T2S;
T3L = T2S - T2R;
T1B = T1z + T1A;
T1E = T1C + T1D;
T1F = T1B + T1E;
T26 = T1E - T1B;
}
}
{
E Ti, T1s, Tl, T1t, TS, TX, T34, T33, T2I, T2H, Tp, T1v, Ts, T1w, T13;
E T18, T37, T36, T2L, T2K;
{
E TT, TR, TO, TW;
{
E Tg, Th, TP, TQ;
Tg = Rp[WS(rs, 1)];
Th = Rm[WS(rs, 6)];
Ti = Tg + Th;
TT = Tg - Th;
TP = Ip[WS(rs, 1)];
TQ = Im[WS(rs, 6)];
TR = TP + TQ;
T1s = TP - TQ;
}
{
E Tj, Tk, TU, TV;
Tj = Rp[WS(rs, 5)];
Tk = Rm[WS(rs, 2)];
Tl = Tj + Tk;
TO = Tj - Tk;
TU = Ip[WS(rs, 5)];
TV = Im[WS(rs, 2)];
TW = TU + TV;
T1t = TU - TV;
}
TS = TO + TR;
TX = TT - TW;
T34 = TR - TO;
T33 = TT + TW;
T2I = T1s - T1t;
T2H = Ti - Tl;
}
{
E T14, T12, TZ, T17;
{
E Tn, To, T10, T11;
Tn = Rm[0];
To = Rp[WS(rs, 7)];
Tp = Tn + To;
T14 = Tn - To;
T10 = Im[0];
T11 = Ip[WS(rs, 7)];
T12 = T10 + T11;
T1v = T11 - T10;
}
{
E Tq, Tr, T15, T16;
Tq = Rp[WS(rs, 3)];
Tr = Rm[WS(rs, 4)];
Ts = Tq + Tr;
TZ = Tq - Tr;
T15 = Ip[WS(rs, 3)];
T16 = Im[WS(rs, 4)];
T17 = T15 + T16;
T1w = T15 - T16;
}
T13 = TZ - T12;
T18 = T14 - T17;
T37 = TZ + T12;
T36 = T14 + T17;
T2L = T1v - T1w;
T2K = Tp - Ts;
}
T2J = T2H - T2I;
T2M = T2K + T2L;
T2N = T2J + T2M;
T2U = T2H + T2I;
T2V = T2L - T2K;
T3H = T2V - T2U;
{
E Tm, Tt, T3g, T3h;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
T25 = Tm - Tt;
T3g = FNMS(KP414213562, T33, T34);
T3h = FNMS(KP414213562, T36, T37);
T3i = T3g + T3h;
T3R = T3h - T3g;
}
{
E TY, T19, T1u, T1x;
TY = FMA(KP414213562, TX, TS);
T19 = FNMS(KP414213562, T18, T13);
T1a = TY + T19;
T2g = T19 - TY;
T1u = T1s + T1t;
T1x = T1v + T1w;
T1y = T1u + T1x;
T21 = T1x - T1u;
}
{
E T35, T38, T1n, T1o;
T35 = FMA(KP414213562, T34, T33);
T38 = FMA(KP414213562, T37, T36);
T39 = T35 - T38;
T3W = T35 + T38;
T1n = FNMS(KP414213562, TS, TX);
T1o = FMA(KP414213562, T13, T18);
T1p = T1n + T1o;
T2b = T1n - T1o;
}
}
{
E Tv, T1G, T1b, T1q, T1c, T1H, Tw, T1r, T1I, T1d;
Tv = Tf + Tu;
T1G = T1y + T1F;
T1b = FMA(KP923879532, T1a, TN);
T1q = FMA(KP923879532, T1p, T1m);
Tw = W[0];
T1c = Tw * T1b;
T1H = Tw * T1q;
T1d = W[1];
T1r = FMA(T1d, T1q, T1c);
T1I = FNMS(T1d, T1b, T1H);
Rp[0] = Tv - T1r;
Ip[0] = T1G + T1I;
Rm[0] = Tv + T1r;
Im[0] = T1I - T1G;
}
{
E T1N, T1J, T1L, T1M, T1V, T1Q, T1T, T1R, T1X, T1K, T1P;
T1N = T1F - T1y;
T1K = Tf - Tu;
T1J = W[14];
T1L = T1J * T1K;
T1M = W[15];
T1V = T1M * T1K;
T1Q = FNMS(KP923879532, T1a, TN);
T1T = FNMS(KP923879532, T1p, T1m);
T1P = W[16];
T1R = T1P * T1Q;
T1X = T1P * T1T;
{
E T1O, T1W, T1U, T1Y, T1S;
T1O = FNMS(T1M, T1N, T1L);
T1W = FMA(T1J, T1N, T1V);
T1S = W[17];
T1U = FMA(T1S, T1T, T1R);
T1Y = FNMS(T1S, T1Q, T1X);
Rp[WS(rs, 4)] = T1O - T1U;
Ip[WS(rs, 4)] = T1W + T1Y;
Rm[WS(rs, 4)] = T1O + T1U;
Im[WS(rs, 4)] = T1Y - T1W;
}
}
{
E T2r, T2n, T2p, T2q, T2z, T2u, T2x, T2v, T2B, T2o, T2t;
T2r = T26 - T25;
T2o = T20 - T21;
T2n = W[22];
T2p = T2n * T2o;
T2q = W[23];
T2z = T2q * T2o;
T2u = FNMS(KP923879532, T2b, T2a);
T2x = FNMS(KP923879532, T2g, T2f);
T2t = W[24];
T2v = T2t * T2u;
T2B = T2t * T2x;
{
E T2s, T2A, T2y, T2C, T2w;
T2s = FNMS(T2q, T2r, T2p);
T2A = FMA(T2n, T2r, T2z);
T2w = W[25];
T2y = FMA(T2w, T2x, T2v);
T2C = FNMS(T2w, T2u, T2B);
Rp[WS(rs, 6)] = T2s - T2y;
Ip[WS(rs, 6)] = T2A + T2C;
Rm[WS(rs, 6)] = T2s + T2y;
Im[WS(rs, 6)] = T2C - T2A;
}
}
{
E T27, T1Z, T23, T24, T2j, T2c, T2h, T2d, T2l, T22, T29;
T27 = T25 + T26;
T22 = T20 + T21;
T1Z = W[6];
T23 = T1Z * T22;
T24 = W[7];
T2j = T24 * T22;
T2c = FMA(KP923879532, T2b, T2a);
T2h = FMA(KP923879532, T2g, T2f);
T29 = W[8];
T2d = T29 * T2c;
T2l = T29 * T2h;
{
E T28, T2k, T2i, T2m, T2e;
T28 = FNMS(T24, T27, T23);
T2k = FMA(T1Z, T27, T2j);
T2e = W[9];
T2i = FMA(T2e, T2h, T2d);
T2m = FNMS(T2e, T2c, T2l);
Rp[WS(rs, 2)] = T28 - T2i;
Ip[WS(rs, 2)] = T2k + T2m;
Rm[WS(rs, 2)] = T28 + T2i;
Im[WS(rs, 2)] = T2m - T2k;
}
}
{
E T3N, T47, T43, T45, T46, T4f, T3F, T3J, T3K, T3Z, T3S, T3X, T3T, T41, T4a;
E T4d, T4b, T4h;
{
E T3M, T44, T3I, T3P, T49;
T3M = T2J - T2M;
T3N = FMA(KP707106781, T3M, T3L);
T47 = FNMS(KP707106781, T3M, T3L);
T44 = FNMS(KP707106781, T3H, T3G);
T43 = W[26];
T45 = T43 * T44;
T46 = W[27];
T4f = T46 * T44;
T3I = FMA(KP707106781, T3H, T3G);
T3F = W[10];
T3J = T3F * T3I;
T3K = W[11];
T3Z = T3K * T3I;
T3S = FMA(KP923879532, T3R, T3Q);
T3X = FNMS(KP923879532, T3W, T3V);
T3P = W[12];
T3T = T3P * T3S;
T41 = T3P * T3X;
T4a = FNMS(KP923879532, T3R, T3Q);
T4d = FMA(KP923879532, T3W, T3V);
T49 = W[28];
T4b = T49 * T4a;
T4h = T49 * T4d;
}
{
E T3O, T40, T3Y, T42, T3U;
T3O = FNMS(T3K, T3N, T3J);
T40 = FMA(T3F, T3N, T3Z);
T3U = W[13];
T3Y = FMA(T3U, T3X, T3T);
T42 = FNMS(T3U, T3S, T41);
Rp[WS(rs, 3)] = T3O - T3Y;
Ip[WS(rs, 3)] = T40 + T42;
Rm[WS(rs, 3)] = T3O + T3Y;
Im[WS(rs, 3)] = T42 - T40;
}
{
E T48, T4g, T4e, T4i, T4c;
T48 = FNMS(T46, T47, T45);
T4g = FMA(T43, T47, T4f);
T4c = W[29];
T4e = FMA(T4c, T4d, T4b);
T4i = FNMS(T4c, T4a, T4h);
Rp[WS(rs, 7)] = T48 - T4e;
Ip[WS(rs, 7)] = T4g + T4i;
Rm[WS(rs, 7)] = T48 + T4e;
Im[WS(rs, 7)] = T4i - T4g;
}
}
{
E T2X, T3t, T3p, T3r, T3s, T3B, T2D, T2P, T2Q, T3l, T3a, T3j, T3b, T3n, T3w;
E T3z, T3x, T3D;
{
E T2W, T3q, T2O, T2Z, T3v;
T2W = T2U + T2V;
T2X = FMA(KP707106781, T2W, T2T);
T3t = FNMS(KP707106781, T2W, T2T);
T3q = FNMS(KP707106781, T2N, T2G);
T3p = W[18];
T3r = T3p * T3q;
T3s = W[19];
T3B = T3s * T3q;
T2O = FMA(KP707106781, T2N, T2G);
T2D = W[2];
T2P = T2D * T2O;
T2Q = W[3];
T3l = T2Q * T2O;
T3a = FMA(KP923879532, T39, T32);
T3j = FNMS(KP923879532, T3i, T3f);
T2Z = W[4];
T3b = T2Z * T3a;
T3n = T2Z * T3j;
T3w = FNMS(KP923879532, T39, T32);
T3z = FMA(KP923879532, T3i, T3f);
T3v = W[20];
T3x = T3v * T3w;
T3D = T3v * T3z;
}
{
E T2Y, T3m, T3k, T3o, T3c;
T2Y = FNMS(T2Q, T2X, T2P);
T3m = FMA(T2D, T2X, T3l);
T3c = W[5];
T3k = FMA(T3c, T3j, T3b);
T3o = FNMS(T3c, T3a, T3n);
Rp[WS(rs, 1)] = T2Y - T3k;
Ip[WS(rs, 1)] = T3m + T3o;
Rm[WS(rs, 1)] = T2Y + T3k;
Im[WS(rs, 1)] = T3o - T3m;
}
{
E T3u, T3C, T3A, T3E, T3y;
T3u = FNMS(T3s, T3t, T3r);
T3C = FMA(T3p, T3t, T3B);
T3y = W[21];
T3A = FMA(T3y, T3z, T3x);
T3E = FNMS(T3y, T3w, T3D);
Rp[WS(rs, 5)] = T3u - T3A;
Ip[WS(rs, 5)] = T3C + T3E;
Rm[WS(rs, 5)] = T3u + T3A;
Im[WS(rs, 5)] = T3E - T3C;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 136, 30, 70, 0 } };
void X(codelet_hc2cbdft_16) (planner *p) {
X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
}
#else
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cbdft_16 -include rdft/scalar/hc2cb.h */
/*
* This function contains 206 FP additions, 84 FP multiplications,
* (or, 168 additions, 46 multiplications, 38 fused multiply/add),
* 60 stack variables, 3 constants, and 64 memory accesses
*/
#include "rdft/scalar/hc2cb.h"
static void hc2cbdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
{
DK(KP923879532, +0.923879532511286756128183189396788286822416626);
DK(KP382683432, +0.382683432365089771728459984030398866761344562);
DK(KP707106781, +0.707106781186547524400844362104849039284835938);
{
INT m;
for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
E TB, T2L, T30, T1n, Tf, T1U, T2H, T3p, T1E, T1Z, TM, T31, T2s, T3k, T1i;
E T2M, Tu, T1Y, T2Q, T2X, T2T, T2Y, TY, T1d, T19, T1e, T2v, T2C, T2y, T2D;
E T1x, T1V;
{
E T3, T1j, TA, T1B, T6, Tx, T1m, T1C, Ta, TC, TF, T1y, Td, TH, TK;
E T1z;
{
E T1, T2, Ty, Tz;
T1 = Rp[0];
T2 = Rm[WS(rs, 7)];
T3 = T1 + T2;
T1j = T1 - T2;
Ty = Ip[0];
Tz = Im[WS(rs, 7)];
TA = Ty + Tz;
T1B = Ty - Tz;
}
{
E T4, T5, T1k, T1l;
T4 = Rp[WS(rs, 4)];
T5 = Rm[WS(rs, 3)];
T6 = T4 + T5;
Tx = T4 - T5;
T1k = Ip[WS(rs, 4)];
T1l = Im[WS(rs, 3)];
T1m = T1k + T1l;
T1C = T1k - T1l;
}
{
E T8, T9, TD, TE;
T8 = Rp[WS(rs, 2)];
T9 = Rm[WS(rs, 5)];
Ta = T8 + T9;
TC = T8 - T9;
TD = Ip[WS(rs, 2)];
TE = Im[WS(rs, 5)];
TF = TD + TE;
T1y = TD - TE;
}
{
E Tb, Tc, TI, TJ;
Tb = Rm[WS(rs, 1)];
Tc = Rp[WS(rs, 6)];
Td = Tb + Tc;
TH = Tb - Tc;
TI = Im[WS(rs, 1)];
TJ = Ip[WS(rs, 6)];
TK = TI + TJ;
T1z = TJ - TI;
}
{
E T7, Te, TG, TL;
TB = Tx + TA;
T2L = TA - Tx;
T30 = T1j + T1m;
T1n = T1j - T1m;
T7 = T3 + T6;
Te = Ta + Td;
Tf = T7 + Te;
T1U = T7 - Te;
{
E T2F, T2G, T1A, T1D;
T2F = Ta - Td;
T2G = T1B - T1C;
T2H = T2F + T2G;
T3p = T2G - T2F;
T1A = T1y + T1z;
T1D = T1B + T1C;
T1E = T1A + T1D;
T1Z = T1D - T1A;
}
TG = TC + TF;
TL = TH + TK;
TM = KP707106781 * (TG - TL);
T31 = KP707106781 * (TG + TL);
{
E T2q, T2r, T1g, T1h;
T2q = T3 - T6;
T2r = T1z - T1y;
T2s = T2q + T2r;
T3k = T2q - T2r;
T1g = TC - TF;
T1h = TH - TK;
T1i = KP707106781 * (T1g + T1h);
T2M = KP707106781 * (T1g - T1h);
}
}
}
{
E Ti, TT, TR, T1r, Tl, TO, TW, T1s, Tp, T14, T12, T1u, Ts, TZ, T17;
E T1v;
{
E Tg, Th, TP, TQ;
Tg = Rp[WS(rs, 1)];
Th = Rm[WS(rs, 6)];
Ti = Tg + Th;
TT = Tg - Th;
TP = Ip[WS(rs, 1)];
TQ = Im[WS(rs, 6)];
TR = TP + TQ;
T1r = TP - TQ;
}
{
E Tj, Tk, TU, TV;
Tj = Rp[WS(rs, 5)];
Tk = Rm[WS(rs, 2)];
Tl = Tj + Tk;
TO = Tj - Tk;
TU = Ip[WS(rs, 5)];
TV = Im[WS(rs, 2)];
TW = TU + TV;
T1s = TU - TV;
}
{
E Tn, To, T10, T11;
Tn = Rm[0];
To = Rp[WS(rs, 7)];
Tp = Tn + To;
T14 = Tn - To;
T10 = Im[0];
T11 = Ip[WS(rs, 7)];
T12 = T10 + T11;
T1u = T11 - T10;
}
{
E Tq, Tr, T15, T16;
Tq = Rp[WS(rs, 3)];
Tr = Rm[WS(rs, 4)];
Ts = Tq + Tr;
TZ = Tq - Tr;
T15 = Ip[WS(rs, 3)];
T16 = Im[WS(rs, 4)];
T17 = T15 + T16;
T1v = T15 - T16;
}
{
E Tm, Tt, T2O, T2P;
Tm = Ti + Tl;
Tt = Tp + Ts;
Tu = Tm + Tt;
T1Y = Tm - Tt;
T2O = TR - TO;
T2P = TT + TW;
T2Q = FMA(KP382683432, T2O, KP923879532 * T2P);
T2X = FNMS(KP923879532, T2O, KP382683432 * T2P);
}
{
E T2R, T2S, TS, TX;
T2R = TZ + T12;
T2S = T14 + T17;
T2T = FMA(KP382683432, T2R, KP923879532 * T2S);
T2Y = FNMS(KP923879532, T2R, KP382683432 * T2S);
TS = TO + TR;
TX = TT - TW;
TY = FMA(KP923879532, TS, KP382683432 * TX);
T1d = FNMS(KP382683432, TS, KP923879532 * TX);
}
{
E T13, T18, T2t, T2u;
T13 = TZ - T12;
T18 = T14 - T17;
T19 = FNMS(KP382683432, T18, KP923879532 * T13);
T1e = FMA(KP382683432, T13, KP923879532 * T18);
T2t = Ti - Tl;
T2u = T1r - T1s;
T2v = T2t - T2u;
T2C = T2t + T2u;
}
{
E T2w, T2x, T1t, T1w;
T2w = Tp - Ts;
T2x = T1u - T1v;
T2y = T2w + T2x;
T2D = T2x - T2w;
T1t = T1r + T1s;
T1w = T1u + T1v;
T1x = T1t + T1w;
T1V = T1w - T1t;
}
}
{
E Tv, T1F, T1b, T1N, T1p, T1P, T1L, T1R;
Tv = Tf + Tu;
T1F = T1x + T1E;
{
E TN, T1a, T1f, T1o;
TN = TB + TM;
T1a = TY + T19;
T1b = TN + T1a;
T1N = TN - T1a;
T1f = T1d + T1e;
T1o = T1i + T1n;
T1p = T1f + T1o;
T1P = T1o - T1f;
{
E T1I, T1K, T1H, T1J;
T1I = Tf - Tu;
T1K = T1E - T1x;
T1H = W[14];
T1J = W[15];
T1L = FNMS(T1J, T1K, T1H * T1I);
T1R = FMA(T1J, T1I, T1H * T1K);
}
}
{
E T1q, T1G, Tw, T1c;
Tw = W[0];
T1c = W[1];
T1q = FMA(Tw, T1b, T1c * T1p);
T1G = FNMS(T1c, T1b, Tw * T1p);
Rp[0] = Tv - T1q;
Ip[0] = T1F + T1G;
Rm[0] = Tv + T1q;
Im[0] = T1G - T1F;
}
{
E T1Q, T1S, T1M, T1O;
T1M = W[16];
T1O = W[17];
T1Q = FMA(T1M, T1N, T1O * T1P);
T1S = FNMS(T1O, T1N, T1M * T1P);
Rp[WS(rs, 4)] = T1L - T1Q;
Ip[WS(rs, 4)] = T1R + T1S;
Rm[WS(rs, 4)] = T1L + T1Q;
Im[WS(rs, 4)] = T1S - T1R;
}
}
{
E T25, T2j, T29, T2l, T21, T2b, T2h, T2n;
{
E T23, T24, T27, T28;
T23 = TB - TM;
T24 = T1d - T1e;
T25 = T23 + T24;
T2j = T23 - T24;
T27 = T19 - TY;
T28 = T1n - T1i;
T29 = T27 + T28;
T2l = T28 - T27;
}
{
E T1W, T20, T1T, T1X;
T1W = T1U + T1V;
T20 = T1Y + T1Z;
T1T = W[6];
T1X = W[7];
T21 = FNMS(T1X, T20, T1T * T1W);
T2b = FMA(T1X, T1W, T1T * T20);
}
{
E T2e, T2g, T2d, T2f;
T2e = T1U - T1V;
T2g = T1Z - T1Y;
T2d = W[22];
T2f = W[23];
T2h = FNMS(T2f, T2g, T2d * T2e);
T2n = FMA(T2f, T2e, T2d * T2g);
}
{
E T2a, T2c, T22, T26;
T22 = W[8];
T26 = W[9];
T2a = FMA(T22, T25, T26 * T29);
T2c = FNMS(T26, T25, T22 * T29);
Rp[WS(rs, 2)] = T21 - T2a;
Ip[WS(rs, 2)] = T2b + T2c;
Rm[WS(rs, 2)] = T21 + T2a;
Im[WS(rs, 2)] = T2c - T2b;
}
{
E T2m, T2o, T2i, T2k;
T2i = W[24];
T2k = W[25];
T2m = FMA(T2i, T2j, T2k * T2l);
T2o = FNMS(T2k, T2j, T2i * T2l);
Rp[WS(rs, 6)] = T2h - T2m;
Ip[WS(rs, 6)] = T2n + T2o;
Rm[WS(rs, 6)] = T2h + T2m;
Im[WS(rs, 6)] = T2o - T2n;
}
}
{
E T2A, T38, T2I, T3a, T2V, T3d, T33, T3f, T2z, T2E;
T2z = KP707106781 * (T2v + T2y);
T2A = T2s + T2z;
T38 = T2s - T2z;
T2E = KP707106781 * (T2C + T2D);
T2I = T2E + T2H;
T3a = T2H - T2E;
{
E T2N, T2U, T2Z, T32;
T2N = T2L + T2M;
T2U = T2Q - T2T;
T2V = T2N + T2U;
T3d = T2N - T2U;
T2Z = T2X + T2Y;
T32 = T30 - T31;
T33 = T2Z + T32;
T3f = T32 - T2Z;
}
{
E T2J, T35, T34, T36;
{
E T2p, T2B, T2K, T2W;
T2p = W[2];
T2B = W[3];
T2J = FNMS(T2B, T2I, T2p * T2A);
T35 = FMA(T2B, T2A, T2p * T2I);
T2K = W[4];
T2W = W[5];
T34 = FMA(T2K, T2V, T2W * T33);
T36 = FNMS(T2W, T2V, T2K * T33);
}
Rp[WS(rs, 1)] = T2J - T34;
Ip[WS(rs, 1)] = T35 + T36;
Rm[WS(rs, 1)] = T2J + T34;
Im[WS(rs, 1)] = T36 - T35;
}
{
E T3b, T3h, T3g, T3i;
{
E T37, T39, T3c, T3e;
T37 = W[18];
T39 = W[19];
T3b = FNMS(T39, T3a, T37 * T38);
T3h = FMA(T39, T38, T37 * T3a);
T3c = W[20];
T3e = W[21];
T3g = FMA(T3c, T3d, T3e * T3f);
T3i = FNMS(T3e, T3d, T3c * T3f);
}
Rp[WS(rs, 5)] = T3b - T3g;
Ip[WS(rs, 5)] = T3h + T3i;
Rm[WS(rs, 5)] = T3b + T3g;
Im[WS(rs, 5)] = T3i - T3h;
}
}
{
E T3m, T3E, T3q, T3G, T3v, T3J, T3z, T3L, T3l, T3o;
T3l = KP707106781 * (T2D - T2C);
T3m = T3k + T3l;
T3E = T3k - T3l;
T3o = KP707106781 * (T2v - T2y);
T3q = T3o + T3p;
T3G = T3p - T3o;
{
E T3t, T3u, T3x, T3y;
T3t = T2L - T2M;
T3u = T2X - T2Y;
T3v = T3t + T3u;
T3J = T3t - T3u;
T3x = T31 + T30;
T3y = T2Q + T2T;
T3z = T3x - T3y;
T3L = T3y + T3x;
}
{
E T3r, T3B, T3A, T3C;
{
E T3j, T3n, T3s, T3w;
T3j = W[10];
T3n = W[11];
T3r = FNMS(T3n, T3q, T3j * T3m);
T3B = FMA(T3n, T3m, T3j * T3q);
T3s = W[12];
T3w = W[13];
T3A = FMA(T3s, T3v, T3w * T3z);
T3C = FNMS(T3w, T3v, T3s * T3z);
}
Rp[WS(rs, 3)] = T3r - T3A;
Ip[WS(rs, 3)] = T3B + T3C;
Rm[WS(rs, 3)] = T3r + T3A;
Im[WS(rs, 3)] = T3C - T3B;
}
{
E T3H, T3N, T3M, T3O;
{
E T3D, T3F, T3I, T3K;
T3D = W[26];
T3F = W[27];
T3H = FNMS(T3F, T3G, T3D * T3E);
T3N = FMA(T3F, T3E, T3D * T3G);
T3I = W[28];
T3K = W[29];
T3M = FMA(T3I, T3J, T3K * T3L);
T3O = FNMS(T3K, T3J, T3I * T3L);
}
Rp[WS(rs, 7)] = T3H - T3M;
Ip[WS(rs, 7)] = T3N + T3O;
Rm[WS(rs, 7)] = T3H + T3M;
Im[WS(rs, 7)] = T3O - T3N;
}
}
}
}
}
static const tw_instr twinstr[] = {
{ TW_FULL, 1, 16 },
{ TW_NEXT, 1, 0 }
};
static const hc2c_desc desc = { 16, "hc2cbdft_16", twinstr, &GENUS, { 168, 46, 38, 0 } };
void X(codelet_hc2cbdft_16) (planner *p) {
X(khc2c_register) (p, hc2cbdft_16, &desc, HC2C_VIA_DFT);
}
#endif