mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-27 15:03:01 +00:00
451 lines
18 KiB
C
451 lines
18 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:00 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 100 FP additions, 95 FP multiplications,
|
||
|
* (or, 55 additions, 50 multiplications, 45 fused multiply/add),
|
||
|
* 44 stack variables, 4 constants, and 50 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/q1f.h"
|
||
|
|
||
|
static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
|
||
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ri;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
|
||
|
V T1, Ta, Ti, Te, T8, T9, T1j, T1s, T1A, T1w, T1q, T1r, Tl, Tu, TC;
|
||
|
V Ty, Ts, Tt, TF, TO, TW, TS, TM, TN, TZ, T18, T1g, T1c, T16, T17;
|
||
|
{
|
||
|
V T7, Td, T4, Tc;
|
||
|
T1 = LD(&(x[0]), ms, &(x[0]));
|
||
|
{
|
||
|
V T5, T6, T2, T3;
|
||
|
T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
T7 = VADD(T5, T6);
|
||
|
Td = VSUB(T5, T6);
|
||
|
T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
T4 = VADD(T2, T3);
|
||
|
Tc = VSUB(T2, T3);
|
||
|
}
|
||
|
Ta = VSUB(T4, T7);
|
||
|
Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
|
||
|
Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
|
||
|
T8 = VADD(T4, T7);
|
||
|
T9 = VFNMS(LDK(KP250000000), T8, T1);
|
||
|
}
|
||
|
{
|
||
|
V T1p, T1v, T1m, T1u;
|
||
|
T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
|
||
|
{
|
||
|
V T1n, T1o, T1k, T1l;
|
||
|
T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
|
||
|
T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1p = VADD(T1n, T1o);
|
||
|
T1v = VSUB(T1n, T1o);
|
||
|
T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
|
||
|
T1m = VADD(T1k, T1l);
|
||
|
T1u = VSUB(T1k, T1l);
|
||
|
}
|
||
|
T1s = VSUB(T1m, T1p);
|
||
|
T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v));
|
||
|
T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u));
|
||
|
T1q = VADD(T1m, T1p);
|
||
|
T1r = VFNMS(LDK(KP250000000), T1q, T1j);
|
||
|
}
|
||
|
{
|
||
|
V Tr, Tx, To, Tw;
|
||
|
Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
||
|
{
|
||
|
V Tp, Tq, Tm, Tn;
|
||
|
Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
||
|
Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
Tr = VADD(Tp, Tq);
|
||
|
Tx = VSUB(Tp, Tq);
|
||
|
Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
|
||
|
To = VADD(Tm, Tn);
|
||
|
Tw = VSUB(Tm, Tn);
|
||
|
}
|
||
|
Tu = VSUB(To, Tr);
|
||
|
TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx));
|
||
|
Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw));
|
||
|
Ts = VADD(To, Tr);
|
||
|
Tt = VFNMS(LDK(KP250000000), Ts, Tl);
|
||
|
}
|
||
|
{
|
||
|
V TL, TR, TI, TQ;
|
||
|
TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
||
|
{
|
||
|
V TJ, TK, TG, TH;
|
||
|
TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
||
|
TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
TL = VADD(TJ, TK);
|
||
|
TR = VSUB(TJ, TK);
|
||
|
TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
|
||
|
TI = VADD(TG, TH);
|
||
|
TQ = VSUB(TG, TH);
|
||
|
}
|
||
|
TO = VSUB(TI, TL);
|
||
|
TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR));
|
||
|
TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ));
|
||
|
TM = VADD(TI, TL);
|
||
|
TN = VFNMS(LDK(KP250000000), TM, TF);
|
||
|
}
|
||
|
{
|
||
|
V T15, T1b, T12, T1a;
|
||
|
TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
||
|
{
|
||
|
V T13, T14, T10, T11;
|
||
|
T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
||
|
T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
T15 = VADD(T13, T14);
|
||
|
T1b = VSUB(T13, T14);
|
||
|
T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
|
||
|
T12 = VADD(T10, T11);
|
||
|
T1a = VSUB(T10, T11);
|
||
|
}
|
||
|
T18 = VSUB(T12, T15);
|
||
|
T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b));
|
||
|
T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a));
|
||
|
T16 = VADD(T12, T15);
|
||
|
T17 = VFNMS(LDK(KP250000000), T16, TZ);
|
||
|
}
|
||
|
ST(&(x[0]), VADD(T1, T8), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)]));
|
||
|
{
|
||
|
V Tj, Tk, Th, T1B, T1C, T1z;
|
||
|
Th = VFNMS(LDK(KP559016994), Ta, T9);
|
||
|
Tj = BYTWJ(&(W[TWVL * 2]), VFMAI(Ti, Th));
|
||
|
Tk = BYTWJ(&(W[TWVL * 4]), VFNMSI(Ti, Th));
|
||
|
ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
|
||
|
T1z = VFNMS(LDK(KP559016994), T1s, T1r);
|
||
|
T1B = BYTWJ(&(W[TWVL * 2]), VFMAI(T1A, T1z));
|
||
|
T1C = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1A, T1z));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
|
||
|
}
|
||
|
{
|
||
|
V T1h, T1i, T1f, TD, TE, TB;
|
||
|
T1f = VFNMS(LDK(KP559016994), T18, T17);
|
||
|
T1h = BYTWJ(&(W[TWVL * 2]), VFMAI(T1g, T1f));
|
||
|
T1i = BYTWJ(&(W[TWVL * 4]), VFNMSI(T1g, T1f));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
TB = VFNMS(LDK(KP559016994), Tu, Tt);
|
||
|
TD = BYTWJ(&(W[TWVL * 2]), VFMAI(TC, TB));
|
||
|
TE = BYTWJ(&(W[TWVL * 4]), VFNMSI(TC, TB));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TX, TY, TV, TT, TU, TP;
|
||
|
TV = VFNMS(LDK(KP559016994), TO, TN);
|
||
|
TX = BYTWJ(&(W[TWVL * 2]), VFMAI(TW, TV));
|
||
|
TY = BYTWJ(&(W[TWVL * 4]), VFNMSI(TW, TV));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
|
||
|
TP = VFMA(LDK(KP559016994), TO, TN);
|
||
|
TT = BYTWJ(&(W[0]), VFNMSI(TS, TP));
|
||
|
TU = BYTWJ(&(W[TWVL * 6]), VFMAI(TS, TP));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
|
||
|
}
|
||
|
{
|
||
|
V Tf, Tg, Tb, Tz, TA, Tv;
|
||
|
Tb = VFMA(LDK(KP559016994), Ta, T9);
|
||
|
Tf = BYTWJ(&(W[0]), VFNMSI(Te, Tb));
|
||
|
Tg = BYTWJ(&(W[TWVL * 6]), VFMAI(Te, Tb));
|
||
|
ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
|
||
|
Tv = VFMA(LDK(KP559016994), Tu, Tt);
|
||
|
Tz = BYTWJ(&(W[0]), VFNMSI(Ty, Tv));
|
||
|
TA = BYTWJ(&(W[TWVL * 6]), VFMAI(Ty, Tv));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V T1d, T1e, T19, T1x, T1y, T1t;
|
||
|
T19 = VFMA(LDK(KP559016994), T18, T17);
|
||
|
T1d = BYTWJ(&(W[0]), VFNMSI(T1c, T19));
|
||
|
T1e = BYTWJ(&(W[TWVL * 6]), VFMAI(T1c, T19));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1t = VFMA(LDK(KP559016994), T1s, T1r);
|
||
|
T1x = BYTWJ(&(W[0]), VFNMSI(T1w, T1t));
|
||
|
T1y = BYTWJ(&(W[TWVL * 6]), VFMAI(T1w, T1t));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, { 55, 50, 45, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_q1fv_5) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1fv_5, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1fv_5 -include dft/simd/q1f.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 100 FP additions, 70 FP multiplications,
|
||
|
* (or, 85 additions, 55 multiplications, 15 fused multiply/add),
|
||
|
* 44 stack variables, 4 constants, and 50 memory accesses
|
||
|
*/
|
||
|
#include "dft/simd/q1f.h"
|
||
|
|
||
|
static void q1fv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
|
||
|
DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
|
||
|
DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
|
||
|
DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
|
||
|
{
|
||
|
INT m;
|
||
|
R *x;
|
||
|
x = ri;
|
||
|
for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
|
||
|
V T8, T7, Th, Te, T9, Ta, T1q, T1p, T1z, T1w, T1r, T1s, Ts, Tr, TB;
|
||
|
V Ty, Tt, Tu, TM, TL, TV, TS, TN, TO, T16, T15, T1f, T1c, T17, T18;
|
||
|
{
|
||
|
V T6, Td, T3, Tc;
|
||
|
T8 = LD(&(x[0]), ms, &(x[0]));
|
||
|
{
|
||
|
V T4, T5, T1, T2;
|
||
|
T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
|
||
|
T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
|
||
|
T6 = VADD(T4, T5);
|
||
|
Td = VSUB(T4, T5);
|
||
|
T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
|
||
|
T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
|
||
|
T3 = VADD(T1, T2);
|
||
|
Tc = VSUB(T1, T2);
|
||
|
}
|
||
|
T7 = VMUL(LDK(KP559016994), VSUB(T3, T6));
|
||
|
Th = VBYI(VFNMS(LDK(KP587785252), Tc, VMUL(LDK(KP951056516), Td)));
|
||
|
Te = VBYI(VFMA(LDK(KP951056516), Tc, VMUL(LDK(KP587785252), Td)));
|
||
|
T9 = VADD(T3, T6);
|
||
|
Ta = VFNMS(LDK(KP250000000), T9, T8);
|
||
|
}
|
||
|
{
|
||
|
V T1o, T1v, T1l, T1u;
|
||
|
T1q = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
|
||
|
{
|
||
|
V T1m, T1n, T1j, T1k;
|
||
|
T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
|
||
|
T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1o = VADD(T1m, T1n);
|
||
|
T1v = VSUB(T1m, T1n);
|
||
|
T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
|
||
|
T1l = VADD(T1j, T1k);
|
||
|
T1u = VSUB(T1j, T1k);
|
||
|
}
|
||
|
T1p = VMUL(LDK(KP559016994), VSUB(T1l, T1o));
|
||
|
T1z = VBYI(VFNMS(LDK(KP587785252), T1u, VMUL(LDK(KP951056516), T1v)));
|
||
|
T1w = VBYI(VFMA(LDK(KP951056516), T1u, VMUL(LDK(KP587785252), T1v)));
|
||
|
T1r = VADD(T1l, T1o);
|
||
|
T1s = VFNMS(LDK(KP250000000), T1r, T1q);
|
||
|
}
|
||
|
{
|
||
|
V Tq, Tx, Tn, Tw;
|
||
|
Ts = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
|
||
|
{
|
||
|
V To, Tp, Tl, Tm;
|
||
|
To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
|
||
|
Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
Tq = VADD(To, Tp);
|
||
|
Tx = VSUB(To, Tp);
|
||
|
Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
|
||
|
Tn = VADD(Tl, Tm);
|
||
|
Tw = VSUB(Tl, Tm);
|
||
|
}
|
||
|
Tr = VMUL(LDK(KP559016994), VSUB(Tn, Tq));
|
||
|
TB = VBYI(VFNMS(LDK(KP587785252), Tw, VMUL(LDK(KP951056516), Tx)));
|
||
|
Ty = VBYI(VFMA(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tx)));
|
||
|
Tt = VADD(Tn, Tq);
|
||
|
Tu = VFNMS(LDK(KP250000000), Tt, Ts);
|
||
|
}
|
||
|
{
|
||
|
V TK, TR, TH, TQ;
|
||
|
TM = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
|
||
|
{
|
||
|
V TI, TJ, TF, TG;
|
||
|
TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
|
||
|
TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
TK = VADD(TI, TJ);
|
||
|
TR = VSUB(TI, TJ);
|
||
|
TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
|
||
|
TH = VADD(TF, TG);
|
||
|
TQ = VSUB(TF, TG);
|
||
|
}
|
||
|
TL = VMUL(LDK(KP559016994), VSUB(TH, TK));
|
||
|
TV = VBYI(VFNMS(LDK(KP587785252), TQ, VMUL(LDK(KP951056516), TR)));
|
||
|
TS = VBYI(VFMA(LDK(KP951056516), TQ, VMUL(LDK(KP587785252), TR)));
|
||
|
TN = VADD(TH, TK);
|
||
|
TO = VFNMS(LDK(KP250000000), TN, TM);
|
||
|
}
|
||
|
{
|
||
|
V T14, T1b, T11, T1a;
|
||
|
T16 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
|
||
|
{
|
||
|
V T12, T13, TZ, T10;
|
||
|
T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
|
||
|
T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
T14 = VADD(T12, T13);
|
||
|
T1b = VSUB(T12, T13);
|
||
|
TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
|
||
|
T11 = VADD(TZ, T10);
|
||
|
T1a = VSUB(TZ, T10);
|
||
|
}
|
||
|
T15 = VMUL(LDK(KP559016994), VSUB(T11, T14));
|
||
|
T1f = VBYI(VFNMS(LDK(KP587785252), T1a, VMUL(LDK(KP951056516), T1b)));
|
||
|
T1c = VBYI(VFMA(LDK(KP951056516), T1a, VMUL(LDK(KP587785252), T1b)));
|
||
|
T17 = VADD(T11, T14);
|
||
|
T18 = VFNMS(LDK(KP250000000), T17, T16);
|
||
|
}
|
||
|
ST(&(x[0]), VADD(T8, T9), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 4)]), VADD(T1q, T1r), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 2)]), VADD(TM, TN), ms, &(x[0]));
|
||
|
ST(&(x[WS(rs, 3)]), VADD(T16, T17), ms, &(x[WS(rs, 1)]));
|
||
|
ST(&(x[WS(rs, 1)]), VADD(Ts, Tt), ms, &(x[WS(rs, 1)]));
|
||
|
{
|
||
|
V Tj, Tk, Ti, T1B, T1C, T1A;
|
||
|
Ti = VSUB(Ta, T7);
|
||
|
Tj = BYTWJ(&(W[TWVL * 2]), VADD(Th, Ti));
|
||
|
Tk = BYTWJ(&(W[TWVL * 4]), VSUB(Ti, Th));
|
||
|
ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
|
||
|
T1A = VSUB(T1s, T1p);
|
||
|
T1B = BYTWJ(&(W[TWVL * 2]), VADD(T1z, T1A));
|
||
|
T1C = BYTWJ(&(W[TWVL * 4]), VSUB(T1A, T1z));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
|
||
|
}
|
||
|
{
|
||
|
V T1h, T1i, T1g, TD, TE, TC;
|
||
|
T1g = VSUB(T18, T15);
|
||
|
T1h = BYTWJ(&(W[TWVL * 2]), VADD(T1f, T1g));
|
||
|
T1i = BYTWJ(&(W[TWVL * 4]), VSUB(T1g, T1f));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
TC = VSUB(Tu, Tr);
|
||
|
TD = BYTWJ(&(W[TWVL * 2]), VADD(TB, TC));
|
||
|
TE = BYTWJ(&(W[TWVL * 4]), VSUB(TC, TB));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V TX, TY, TW, TT, TU, TP;
|
||
|
TW = VSUB(TO, TL);
|
||
|
TX = BYTWJ(&(W[TWVL * 2]), VADD(TV, TW));
|
||
|
TY = BYTWJ(&(W[TWVL * 4]), VSUB(TW, TV));
|
||
|
ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
|
||
|
ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
|
||
|
TP = VADD(TL, TO);
|
||
|
TT = BYTWJ(&(W[0]), VSUB(TP, TS));
|
||
|
TU = BYTWJ(&(W[TWVL * 6]), VADD(TS, TP));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
|
||
|
}
|
||
|
{
|
||
|
V Tf, Tg, Tb, Tz, TA, Tv;
|
||
|
Tb = VADD(T7, Ta);
|
||
|
Tf = BYTWJ(&(W[0]), VSUB(Tb, Te));
|
||
|
Tg = BYTWJ(&(W[TWVL * 6]), VADD(Te, Tb));
|
||
|
ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
|
||
|
Tv = VADD(Tr, Tu);
|
||
|
Tz = BYTWJ(&(W[0]), VSUB(Tv, Ty));
|
||
|
TA = BYTWJ(&(W[TWVL * 6]), VADD(Ty, Tv));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
}
|
||
|
{
|
||
|
V T1d, T1e, T19, T1x, T1y, T1t;
|
||
|
T19 = VADD(T15, T18);
|
||
|
T1d = BYTWJ(&(W[0]), VSUB(T19, T1c));
|
||
|
T1e = BYTWJ(&(W[TWVL * 6]), VADD(T1c, T19));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
|
||
|
T1t = VADD(T1p, T1s);
|
||
|
T1x = BYTWJ(&(W[0]), VSUB(T1t, T1w));
|
||
|
T1y = BYTWJ(&(W[TWVL * 6]), VADD(T1w, T1t));
|
||
|
ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
|
||
|
ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
VLEAVE();
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
VTW(0, 1),
|
||
|
VTW(0, 2),
|
||
|
VTW(0, 3),
|
||
|
VTW(0, 4),
|
||
|
{ TW_NEXT, VL, 0 }
|
||
|
};
|
||
|
|
||
|
static const ct_desc desc = { 5, XSIMD_STRING("q1fv_5"), twinstr, &GENUS, { 85, 55, 15, 0 }, 0, 0, 0 };
|
||
|
|
||
|
void XSIMD(codelet_q1fv_5) (planner *p) {
|
||
|
X(kdft_difsq_register) (p, q1fv_5, &desc);
|
||
|
}
|
||
|
#endif
|