mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 10:47:26 +00:00
598 lines
14 KiB
C
598 lines
14 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:47:07 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 118 FP additions, 68 FP multiplications,
|
||
|
* (or, 72 additions, 22 multiplications, 46 fused multiply/add),
|
||
|
* 47 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
|
||
|
E T18, T20, T1b, T21, T1s, T2a, T1p, T29, TI, TN, TO, Tb, To, T1f, T23;
|
||
|
E T1i, T24, T1z, T2d, T1w, T2c, Tt, Ty, Tz, Tm, TD;
|
||
|
{
|
||
|
E T1, TE, T6, TM, T4, T1o, TH, T17, T9, T1r, TL, T1a;
|
||
|
T1 = Rp[0];
|
||
|
TE = Ip[0];
|
||
|
T6 = Rm[WS(rs, 5)];
|
||
|
TM = Im[WS(rs, 5)];
|
||
|
{
|
||
|
E T2, T3, TF, TG;
|
||
|
T2 = Rp[WS(rs, 4)];
|
||
|
T3 = Rm[WS(rs, 3)];
|
||
|
T4 = T2 + T3;
|
||
|
T1o = T2 - T3;
|
||
|
TF = Ip[WS(rs, 4)];
|
||
|
TG = Im[WS(rs, 3)];
|
||
|
TH = TF - TG;
|
||
|
T17 = TF + TG;
|
||
|
}
|
||
|
{
|
||
|
E T7, T8, TJ, TK;
|
||
|
T7 = Rm[WS(rs, 1)];
|
||
|
T8 = Rp[WS(rs, 2)];
|
||
|
T9 = T7 + T8;
|
||
|
T1r = T7 - T8;
|
||
|
TJ = Ip[WS(rs, 2)];
|
||
|
TK = Im[WS(rs, 1)];
|
||
|
TL = TJ - TK;
|
||
|
T1a = TJ + TK;
|
||
|
}
|
||
|
{
|
||
|
E T16, T19, T1q, T1n, T5, Ta;
|
||
|
T16 = FNMS(KP500000000, T4, T1);
|
||
|
T18 = FNMS(KP866025403, T17, T16);
|
||
|
T20 = FMA(KP866025403, T17, T16);
|
||
|
T19 = FNMS(KP500000000, T9, T6);
|
||
|
T1b = FMA(KP866025403, T1a, T19);
|
||
|
T21 = FNMS(KP866025403, T1a, T19);
|
||
|
T1q = FMA(KP500000000, TL, TM);
|
||
|
T1s = FNMS(KP866025403, T1r, T1q);
|
||
|
T2a = FMA(KP866025403, T1r, T1q);
|
||
|
T1n = FNMS(KP500000000, TH, TE);
|
||
|
T1p = FMA(KP866025403, T1o, T1n);
|
||
|
T29 = FNMS(KP866025403, T1o, T1n);
|
||
|
TI = TE + TH;
|
||
|
TN = TL - TM;
|
||
|
TO = TI - TN;
|
||
|
T5 = T1 + T4;
|
||
|
Ta = T6 + T9;
|
||
|
Tb = T5 + Ta;
|
||
|
To = T5 - Ta;
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E Tc, Tp, Th, Tx, Tf, T1v, Ts, T1e, Tk, T1y, Tw, T1h;
|
||
|
Tc = Rp[WS(rs, 3)];
|
||
|
Tp = Ip[WS(rs, 3)];
|
||
|
Th = Rm[WS(rs, 2)];
|
||
|
Tx = Im[WS(rs, 2)];
|
||
|
{
|
||
|
E Td, Te, Tq, Tr;
|
||
|
Td = Rm[WS(rs, 4)];
|
||
|
Te = Rm[0];
|
||
|
Tf = Td + Te;
|
||
|
T1v = Td - Te;
|
||
|
Tq = Im[WS(rs, 4)];
|
||
|
Tr = Im[0];
|
||
|
Ts = Tq + Tr;
|
||
|
T1e = Tq - Tr;
|
||
|
}
|
||
|
{
|
||
|
E Ti, Tj, Tu, Tv;
|
||
|
Ti = Rp[WS(rs, 1)];
|
||
|
Tj = Rp[WS(rs, 5)];
|
||
|
Tk = Ti + Tj;
|
||
|
T1y = Ti - Tj;
|
||
|
Tu = Ip[WS(rs, 1)];
|
||
|
Tv = Ip[WS(rs, 5)];
|
||
|
Tw = Tu + Tv;
|
||
|
T1h = Tv - Tu;
|
||
|
}
|
||
|
{
|
||
|
E T1d, T1g, T1x, T1u, Tg, Tl;
|
||
|
T1d = FNMS(KP500000000, Tf, Tc);
|
||
|
T1f = FMA(KP866025403, T1e, T1d);
|
||
|
T23 = FNMS(KP866025403, T1e, T1d);
|
||
|
T1g = FNMS(KP500000000, Tk, Th);
|
||
|
T1i = FMA(KP866025403, T1h, T1g);
|
||
|
T24 = FNMS(KP866025403, T1h, T1g);
|
||
|
T1x = FMA(KP500000000, Tw, Tx);
|
||
|
T1z = FNMS(KP866025403, T1y, T1x);
|
||
|
T2d = FMA(KP866025403, T1y, T1x);
|
||
|
T1u = FMA(KP500000000, Ts, Tp);
|
||
|
T1w = FMA(KP866025403, T1v, T1u);
|
||
|
T2c = FNMS(KP866025403, T1v, T1u);
|
||
|
Tt = Tp - Ts;
|
||
|
Ty = Tw - Tx;
|
||
|
Tz = Tt - Ty;
|
||
|
Tg = Tc + Tf;
|
||
|
Tl = Th + Tk;
|
||
|
Tm = Tg + Tl;
|
||
|
TD = Tg - Tl;
|
||
|
}
|
||
|
}
|
||
|
Rp[0] = Tb + Tm;
|
||
|
{
|
||
|
E TA, TP, TB, TQ, Tn, TC;
|
||
|
TA = To - Tz;
|
||
|
TP = TD + TO;
|
||
|
Tn = W[16];
|
||
|
TB = Tn * TA;
|
||
|
TQ = Tn * TP;
|
||
|
TC = W[17];
|
||
|
Ip[WS(rs, 4)] = FNMS(TC, TP, TB);
|
||
|
Im[WS(rs, 4)] = FMA(TC, TA, TQ);
|
||
|
}
|
||
|
{
|
||
|
E TS, TV, TT, TW, TR, TU;
|
||
|
TS = To + Tz;
|
||
|
TV = TO - TD;
|
||
|
TR = W[4];
|
||
|
TT = TR * TS;
|
||
|
TW = TR * TV;
|
||
|
TU = W[5];
|
||
|
Ip[WS(rs, 1)] = FNMS(TU, TV, TT);
|
||
|
Im[WS(rs, 1)] = FMA(TU, TS, TW);
|
||
|
}
|
||
|
{
|
||
|
E T11, T12, T13, TX, TZ, T10, T14, TY;
|
||
|
T11 = TI + TN;
|
||
|
T12 = Tt + Ty;
|
||
|
T13 = T11 - T12;
|
||
|
TY = Tb - Tm;
|
||
|
TX = W[10];
|
||
|
TZ = TX * TY;
|
||
|
T10 = W[11];
|
||
|
T14 = T10 * TY;
|
||
|
Rm[0] = T11 + T12;
|
||
|
Rm[WS(rs, 3)] = FMA(TX, T13, T14);
|
||
|
Rp[WS(rs, 3)] = FNMS(T10, T13, TZ);
|
||
|
}
|
||
|
{
|
||
|
E T1k, T1E, T1B, T1H;
|
||
|
{
|
||
|
E T1c, T1j, T1t, T1A;
|
||
|
T1c = T18 + T1b;
|
||
|
T1j = T1f + T1i;
|
||
|
T1k = T1c - T1j;
|
||
|
T1E = T1c + T1j;
|
||
|
T1t = T1p - T1s;
|
||
|
T1A = T1w - T1z;
|
||
|
T1B = T1t - T1A;
|
||
|
T1H = T1t + T1A;
|
||
|
}
|
||
|
{
|
||
|
E T15, T1l, T1m, T1C;
|
||
|
T15 = W[18];
|
||
|
T1l = T15 * T1k;
|
||
|
T1m = W[19];
|
||
|
T1C = T1m * T1k;
|
||
|
Rp[WS(rs, 5)] = FNMS(T1m, T1B, T1l);
|
||
|
Rm[WS(rs, 5)] = FMA(T15, T1B, T1C);
|
||
|
}
|
||
|
{
|
||
|
E T1D, T1F, T1G, T1I;
|
||
|
T1D = W[6];
|
||
|
T1F = T1D * T1E;
|
||
|
T1G = W[7];
|
||
|
T1I = T1G * T1E;
|
||
|
Rp[WS(rs, 2)] = FNMS(T1G, T1H, T1F);
|
||
|
Rm[WS(rs, 2)] = FMA(T1D, T1H, T1I);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T26, T2i, T2f, T2l;
|
||
|
{
|
||
|
E T22, T25, T2b, T2e;
|
||
|
T22 = T20 + T21;
|
||
|
T25 = T23 + T24;
|
||
|
T26 = T22 - T25;
|
||
|
T2i = T22 + T25;
|
||
|
T2b = T29 - T2a;
|
||
|
T2e = T2c - T2d;
|
||
|
T2f = T2b - T2e;
|
||
|
T2l = T2b + T2e;
|
||
|
}
|
||
|
{
|
||
|
E T1Z, T27, T28, T2g;
|
||
|
T1Z = W[2];
|
||
|
T27 = T1Z * T26;
|
||
|
T28 = W[3];
|
||
|
T2g = T28 * T26;
|
||
|
Rp[WS(rs, 1)] = FNMS(T28, T2f, T27);
|
||
|
Rm[WS(rs, 1)] = FMA(T1Z, T2f, T2g);
|
||
|
}
|
||
|
{
|
||
|
E T2h, T2j, T2k, T2m;
|
||
|
T2h = W[14];
|
||
|
T2j = T2h * T2i;
|
||
|
T2k = W[15];
|
||
|
T2m = T2k * T2i;
|
||
|
Rp[WS(rs, 4)] = FNMS(T2k, T2l, T2j);
|
||
|
Rm[WS(rs, 4)] = FMA(T2h, T2l, T2m);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T2q, T2y, T2v, T2B;
|
||
|
{
|
||
|
E T2o, T2p, T2t, T2u;
|
||
|
T2o = T20 - T21;
|
||
|
T2p = T2c + T2d;
|
||
|
T2q = T2o - T2p;
|
||
|
T2y = T2o + T2p;
|
||
|
T2t = T29 + T2a;
|
||
|
T2u = T23 - T24;
|
||
|
T2v = T2t + T2u;
|
||
|
T2B = T2t - T2u;
|
||
|
}
|
||
|
{
|
||
|
E T2r, T2w, T2n, T2s;
|
||
|
T2n = W[8];
|
||
|
T2r = T2n * T2q;
|
||
|
T2w = T2n * T2v;
|
||
|
T2s = W[9];
|
||
|
Ip[WS(rs, 2)] = FNMS(T2s, T2v, T2r);
|
||
|
Im[WS(rs, 2)] = FMA(T2s, T2q, T2w);
|
||
|
}
|
||
|
{
|
||
|
E T2z, T2C, T2x, T2A;
|
||
|
T2x = W[20];
|
||
|
T2z = T2x * T2y;
|
||
|
T2C = T2x * T2B;
|
||
|
T2A = W[21];
|
||
|
Ip[WS(rs, 5)] = FNMS(T2A, T2B, T2z);
|
||
|
Im[WS(rs, 5)] = FMA(T2A, T2y, T2C);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1M, T1U, T1R, T1X;
|
||
|
{
|
||
|
E T1K, T1L, T1P, T1Q;
|
||
|
T1K = T18 - T1b;
|
||
|
T1L = T1w + T1z;
|
||
|
T1M = T1K - T1L;
|
||
|
T1U = T1K + T1L;
|
||
|
T1P = T1p + T1s;
|
||
|
T1Q = T1f - T1i;
|
||
|
T1R = T1P + T1Q;
|
||
|
T1X = T1P - T1Q;
|
||
|
}
|
||
|
{
|
||
|
E T1N, T1S, T1J, T1O;
|
||
|
T1J = W[0];
|
||
|
T1N = T1J * T1M;
|
||
|
T1S = T1J * T1R;
|
||
|
T1O = W[1];
|
||
|
Ip[0] = FNMS(T1O, T1R, T1N);
|
||
|
Im[0] = FMA(T1O, T1M, T1S);
|
||
|
}
|
||
|
{
|
||
|
E T1V, T1Y, T1T, T1W;
|
||
|
T1T = W[12];
|
||
|
T1V = T1T * T1U;
|
||
|
T1Y = T1T * T1X;
|
||
|
T1W = W[13];
|
||
|
Ip[WS(rs, 3)] = FNMS(T1W, T1X, T1V);
|
||
|
Im[WS(rs, 3)] = FMA(T1W, T1U, T1Y);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_12) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cb_12 -include rdft/scalar/hc2cb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 118 FP additions, 60 FP multiplications,
|
||
|
* (or, 88 additions, 30 multiplications, 30 fused multiply/add),
|
||
|
* 39 stack variables, 2 constants, and 48 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hc2cb.h"
|
||
|
|
||
|
static void hc2cb_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
|
||
|
E T5, TH, T12, T1M, T1i, T1U, Tl, Ty, T1c, T1Y, T1s, T1Q, Ta, TM, T15;
|
||
|
E T1N, T1l, T1V, Tg, Tt, T19, T1X, T1p, T1P;
|
||
|
{
|
||
|
E T1, TD, T4, T1g, TG, T11, T10, T1h;
|
||
|
T1 = Rp[0];
|
||
|
TD = Ip[0];
|
||
|
{
|
||
|
E T2, T3, TE, TF;
|
||
|
T2 = Rp[WS(rs, 4)];
|
||
|
T3 = Rm[WS(rs, 3)];
|
||
|
T4 = T2 + T3;
|
||
|
T1g = KP866025403 * (T2 - T3);
|
||
|
TE = Ip[WS(rs, 4)];
|
||
|
TF = Im[WS(rs, 3)];
|
||
|
TG = TE - TF;
|
||
|
T11 = KP866025403 * (TE + TF);
|
||
|
}
|
||
|
T5 = T1 + T4;
|
||
|
TH = TD + TG;
|
||
|
T10 = FNMS(KP500000000, T4, T1);
|
||
|
T12 = T10 - T11;
|
||
|
T1M = T10 + T11;
|
||
|
T1h = FNMS(KP500000000, TG, TD);
|
||
|
T1i = T1g + T1h;
|
||
|
T1U = T1h - T1g;
|
||
|
}
|
||
|
{
|
||
|
E Th, Tx, Tk, T1a, Tw, T1r, T1b, T1q;
|
||
|
Th = Rm[WS(rs, 2)];
|
||
|
Tx = Im[WS(rs, 2)];
|
||
|
{
|
||
|
E Ti, Tj, Tu, Tv;
|
||
|
Ti = Rp[WS(rs, 1)];
|
||
|
Tj = Rp[WS(rs, 5)];
|
||
|
Tk = Ti + Tj;
|
||
|
T1a = KP866025403 * (Ti - Tj);
|
||
|
Tu = Ip[WS(rs, 1)];
|
||
|
Tv = Ip[WS(rs, 5)];
|
||
|
Tw = Tu + Tv;
|
||
|
T1r = KP866025403 * (Tv - Tu);
|
||
|
}
|
||
|
Tl = Th + Tk;
|
||
|
Ty = Tw - Tx;
|
||
|
T1b = FMA(KP500000000, Tw, Tx);
|
||
|
T1c = T1a - T1b;
|
||
|
T1Y = T1a + T1b;
|
||
|
T1q = FNMS(KP500000000, Tk, Th);
|
||
|
T1s = T1q + T1r;
|
||
|
T1Q = T1q - T1r;
|
||
|
}
|
||
|
{
|
||
|
E T6, TL, T9, T1j, TK, T14, T13, T1k;
|
||
|
T6 = Rm[WS(rs, 5)];
|
||
|
TL = Im[WS(rs, 5)];
|
||
|
{
|
||
|
E T7, T8, TI, TJ;
|
||
|
T7 = Rm[WS(rs, 1)];
|
||
|
T8 = Rp[WS(rs, 2)];
|
||
|
T9 = T7 + T8;
|
||
|
T1j = KP866025403 * (T7 - T8);
|
||
|
TI = Ip[WS(rs, 2)];
|
||
|
TJ = Im[WS(rs, 1)];
|
||
|
TK = TI - TJ;
|
||
|
T14 = KP866025403 * (TI + TJ);
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
TM = TK - TL;
|
||
|
T13 = FNMS(KP500000000, T9, T6);
|
||
|
T15 = T13 + T14;
|
||
|
T1N = T13 - T14;
|
||
|
T1k = FMA(KP500000000, TK, TL);
|
||
|
T1l = T1j - T1k;
|
||
|
T1V = T1j + T1k;
|
||
|
}
|
||
|
{
|
||
|
E Tc, Tp, Tf, T17, Ts, T1o, T18, T1n;
|
||
|
Tc = Rp[WS(rs, 3)];
|
||
|
Tp = Ip[WS(rs, 3)];
|
||
|
{
|
||
|
E Td, Te, Tq, Tr;
|
||
|
Td = Rm[WS(rs, 4)];
|
||
|
Te = Rm[0];
|
||
|
Tf = Td + Te;
|
||
|
T17 = KP866025403 * (Td - Te);
|
||
|
Tq = Im[WS(rs, 4)];
|
||
|
Tr = Im[0];
|
||
|
Ts = Tq + Tr;
|
||
|
T1o = KP866025403 * (Tq - Tr);
|
||
|
}
|
||
|
Tg = Tc + Tf;
|
||
|
Tt = Tp - Ts;
|
||
|
T18 = FMA(KP500000000, Ts, Tp);
|
||
|
T19 = T17 + T18;
|
||
|
T1X = T18 - T17;
|
||
|
T1n = FNMS(KP500000000, Tf, Tc);
|
||
|
T1p = T1n + T1o;
|
||
|
T1P = T1n - T1o;
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tm, TU, TW, TX, TY, TT, TV;
|
||
|
Tb = T5 + Ta;
|
||
|
Tm = Tg + Tl;
|
||
|
TU = Tb - Tm;
|
||
|
TW = TH + TM;
|
||
|
TX = Tt + Ty;
|
||
|
TY = TW - TX;
|
||
|
Rp[0] = Tb + Tm;
|
||
|
Rm[0] = TW + TX;
|
||
|
TT = W[10];
|
||
|
TV = W[11];
|
||
|
Rp[WS(rs, 3)] = FNMS(TV, TY, TT * TU);
|
||
|
Rm[WS(rs, 3)] = FMA(TV, TU, TT * TY);
|
||
|
}
|
||
|
{
|
||
|
E TA, TQ, TO, TS;
|
||
|
{
|
||
|
E To, Tz, TC, TN;
|
||
|
To = T5 - Ta;
|
||
|
Tz = Tt - Ty;
|
||
|
TA = To - Tz;
|
||
|
TQ = To + Tz;
|
||
|
TC = Tg - Tl;
|
||
|
TN = TH - TM;
|
||
|
TO = TC + TN;
|
||
|
TS = TN - TC;
|
||
|
}
|
||
|
{
|
||
|
E Tn, TB, TP, TR;
|
||
|
Tn = W[16];
|
||
|
TB = W[17];
|
||
|
Ip[WS(rs, 4)] = FNMS(TB, TO, Tn * TA);
|
||
|
Im[WS(rs, 4)] = FMA(Tn, TO, TB * TA);
|
||
|
TP = W[4];
|
||
|
TR = W[5];
|
||
|
Ip[WS(rs, 1)] = FNMS(TR, TS, TP * TQ);
|
||
|
Im[WS(rs, 1)] = FMA(TP, TS, TR * TQ);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T28, T2e, T2c, T2g;
|
||
|
{
|
||
|
E T26, T27, T2a, T2b;
|
||
|
T26 = T1M - T1N;
|
||
|
T27 = T1X + T1Y;
|
||
|
T28 = T26 - T27;
|
||
|
T2e = T26 + T27;
|
||
|
T2a = T1U + T1V;
|
||
|
T2b = T1P - T1Q;
|
||
|
T2c = T2a + T2b;
|
||
|
T2g = T2a - T2b;
|
||
|
}
|
||
|
{
|
||
|
E T25, T29, T2d, T2f;
|
||
|
T25 = W[8];
|
||
|
T29 = W[9];
|
||
|
Ip[WS(rs, 2)] = FNMS(T29, T2c, T25 * T28);
|
||
|
Im[WS(rs, 2)] = FMA(T25, T2c, T29 * T28);
|
||
|
T2d = W[20];
|
||
|
T2f = W[21];
|
||
|
Ip[WS(rs, 5)] = FNMS(T2f, T2g, T2d * T2e);
|
||
|
Im[WS(rs, 5)] = FMA(T2d, T2g, T2f * T2e);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1S, T22, T20, T24;
|
||
|
{
|
||
|
E T1O, T1R, T1W, T1Z;
|
||
|
T1O = T1M + T1N;
|
||
|
T1R = T1P + T1Q;
|
||
|
T1S = T1O - T1R;
|
||
|
T22 = T1O + T1R;
|
||
|
T1W = T1U - T1V;
|
||
|
T1Z = T1X - T1Y;
|
||
|
T20 = T1W - T1Z;
|
||
|
T24 = T1W + T1Z;
|
||
|
}
|
||
|
{
|
||
|
E T1L, T1T, T21, T23;
|
||
|
T1L = W[2];
|
||
|
T1T = W[3];
|
||
|
Rp[WS(rs, 1)] = FNMS(T1T, T20, T1L * T1S);
|
||
|
Rm[WS(rs, 1)] = FMA(T1T, T1S, T1L * T20);
|
||
|
T21 = W[14];
|
||
|
T23 = W[15];
|
||
|
Rp[WS(rs, 4)] = FNMS(T23, T24, T21 * T22);
|
||
|
Rm[WS(rs, 4)] = FMA(T23, T22, T21 * T24);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1C, T1I, T1G, T1K;
|
||
|
{
|
||
|
E T1A, T1B, T1E, T1F;
|
||
|
T1A = T12 + T15;
|
||
|
T1B = T1p + T1s;
|
||
|
T1C = T1A - T1B;
|
||
|
T1I = T1A + T1B;
|
||
|
T1E = T1i + T1l;
|
||
|
T1F = T19 + T1c;
|
||
|
T1G = T1E - T1F;
|
||
|
T1K = T1E + T1F;
|
||
|
}
|
||
|
{
|
||
|
E T1z, T1D, T1H, T1J;
|
||
|
T1z = W[18];
|
||
|
T1D = W[19];
|
||
|
Rp[WS(rs, 5)] = FNMS(T1D, T1G, T1z * T1C);
|
||
|
Rm[WS(rs, 5)] = FMA(T1D, T1C, T1z * T1G);
|
||
|
T1H = W[6];
|
||
|
T1J = W[7];
|
||
|
Rp[WS(rs, 2)] = FNMS(T1J, T1K, T1H * T1I);
|
||
|
Rm[WS(rs, 2)] = FMA(T1J, T1I, T1H * T1K);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1e, T1w, T1u, T1y;
|
||
|
{
|
||
|
E T16, T1d, T1m, T1t;
|
||
|
T16 = T12 - T15;
|
||
|
T1d = T19 - T1c;
|
||
|
T1e = T16 - T1d;
|
||
|
T1w = T16 + T1d;
|
||
|
T1m = T1i - T1l;
|
||
|
T1t = T1p - T1s;
|
||
|
T1u = T1m + T1t;
|
||
|
T1y = T1m - T1t;
|
||
|
}
|
||
|
{
|
||
|
E TZ, T1f, T1v, T1x;
|
||
|
TZ = W[0];
|
||
|
T1f = W[1];
|
||
|
Ip[0] = FNMS(T1f, T1u, TZ * T1e);
|
||
|
Im[0] = FMA(TZ, T1u, T1f * T1e);
|
||
|
T1v = W[12];
|
||
|
T1x = W[13];
|
||
|
Ip[WS(rs, 3)] = FNMS(T1x, T1y, T1v * T1w);
|
||
|
Im[WS(rs, 3)] = FMA(T1v, T1y, T1x * T1w);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 12 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2c_desc desc = { 12, "hc2cb_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
|
||
|
|
||
|
void X(codelet_hc2cb_12) (planner *p) {
|
||
|
X(khc2c_register) (p, hc2cb_12, &desc, HC2C_VIA_RDFT);
|
||
|
}
|
||
|
#endif
|