mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-05 10:47:26 +00:00
357 lines
10 KiB
C
357 lines
10 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:46:50 EDT 2021 */
|
||
|
|
||
|
#include "rdft/codelet-rdft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 72 FP additions, 66 FP multiplications,
|
||
|
* (or, 18 additions, 12 multiplications, 54 fused multiply/add),
|
||
|
* 41 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hb.h"
|
||
|
|
||
|
static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP801937735, +0.801937735804838252472204639014890102331838324);
|
||
|
DK(KP692021471, +0.692021471630095869627814897002069140197260599);
|
||
|
DK(KP356895867, +0.356895867892209443894399510021300583399127187);
|
||
|
DK(KP554958132, +0.554958132087371191422194871006410481067288862);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
|
||
|
E T1, T4, TC, T7, TB, Ta, TA, TD, TZ, T1l, T1b, TP, Td, Tt, Tw;
|
||
|
E Tv, Tu, Tp, Ty, T1j, T1e, TX, TS;
|
||
|
T1 = cr[0];
|
||
|
{
|
||
|
E T2, T3, T1a, TO, Tc;
|
||
|
T2 = cr[WS(rs, 1)];
|
||
|
T3 = ci[0];
|
||
|
T4 = T2 + T3;
|
||
|
TC = T2 - T3;
|
||
|
{
|
||
|
E T5, T6, T8, T9;
|
||
|
T5 = cr[WS(rs, 2)];
|
||
|
T6 = ci[WS(rs, 1)];
|
||
|
T7 = T5 + T6;
|
||
|
TB = T5 - T6;
|
||
|
T8 = cr[WS(rs, 3)];
|
||
|
T9 = ci[WS(rs, 2)];
|
||
|
Ta = T8 + T9;
|
||
|
TA = T8 - T9;
|
||
|
}
|
||
|
TD = FNMS(KP554958132, TC, TB);
|
||
|
TZ = FMA(KP554958132, TB, TA);
|
||
|
T1l = FMA(KP554958132, TA, TC);
|
||
|
T1a = FNMS(KP356895867, T7, T4);
|
||
|
T1b = FNMS(KP692021471, T1a, Ta);
|
||
|
TO = FNMS(KP356895867, T4, Ta);
|
||
|
TP = FNMS(KP692021471, TO, T7);
|
||
|
Tc = FNMS(KP356895867, Ta, T7);
|
||
|
Td = FNMS(KP692021471, Tc, T4);
|
||
|
}
|
||
|
Tt = ci[WS(rs, 6)];
|
||
|
{
|
||
|
E Th, Tk, Tn, Tf, Tg;
|
||
|
Tf = ci[WS(rs, 3)];
|
||
|
Tg = cr[WS(rs, 4)];
|
||
|
Th = Tf + Tg;
|
||
|
Tw = Tf - Tg;
|
||
|
{
|
||
|
E Ti, Tj, Tl, Tm;
|
||
|
Ti = ci[WS(rs, 4)];
|
||
|
Tj = cr[WS(rs, 5)];
|
||
|
Tk = Ti + Tj;
|
||
|
Tv = Ti - Tj;
|
||
|
Tl = ci[WS(rs, 5)];
|
||
|
Tm = cr[WS(rs, 6)];
|
||
|
Tn = Tl + Tm;
|
||
|
Tu = Tl - Tm;
|
||
|
}
|
||
|
{
|
||
|
E To, Tx, T1i, T1d, TW, TR;
|
||
|
To = FNMS(KP554958132, Tn, Tk);
|
||
|
Tp = FNMS(KP801937735, To, Th);
|
||
|
Tx = FNMS(KP356895867, Tw, Tv);
|
||
|
Ty = FNMS(KP692021471, Tx, Tu);
|
||
|
T1i = FNMS(KP356895867, Tv, Tu);
|
||
|
T1j = FNMS(KP692021471, T1i, Tw);
|
||
|
T1d = FMA(KP554958132, Th, Tn);
|
||
|
T1e = FMA(KP801937735, T1d, Tk);
|
||
|
TW = FNMS(KP356895867, Tu, Tw);
|
||
|
TX = FNMS(KP692021471, TW, Tv);
|
||
|
TR = FMA(KP554958132, Tk, Th);
|
||
|
TS = FNMS(KP801937735, TR, Tn);
|
||
|
}
|
||
|
}
|
||
|
cr[0] = T1 + T4 + T7 + Ta;
|
||
|
ci[0] = Tt + Tu + Tv + Tw;
|
||
|
{
|
||
|
E Tq, TI, TF, TL, Te, Tz, TE;
|
||
|
Te = FNMS(KP900968867, Td, T1);
|
||
|
Tq = FNMS(KP974927912, Tp, Te);
|
||
|
TI = FMA(KP974927912, Tp, Te);
|
||
|
Tz = FNMS(KP900968867, Ty, Tt);
|
||
|
TE = FNMS(KP801937735, TD, TA);
|
||
|
TF = FMA(KP974927912, TE, Tz);
|
||
|
TL = FNMS(KP974927912, TE, Tz);
|
||
|
{
|
||
|
E Tb, Tr, Ts, TG;
|
||
|
Tb = W[4];
|
||
|
Tr = Tb * Tq;
|
||
|
Ts = W[5];
|
||
|
TG = Ts * Tq;
|
||
|
cr[WS(rs, 3)] = FNMS(Ts, TF, Tr);
|
||
|
ci[WS(rs, 3)] = FMA(Tb, TF, TG);
|
||
|
}
|
||
|
{
|
||
|
E TH, TJ, TK, TM;
|
||
|
TH = W[6];
|
||
|
TJ = TH * TI;
|
||
|
TK = W[7];
|
||
|
TM = TK * TI;
|
||
|
cr[WS(rs, 4)] = FNMS(TK, TL, TJ);
|
||
|
ci[WS(rs, 4)] = FMA(TH, TL, TM);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E TT, T14, T11, T17, TQ, TY, T10;
|
||
|
TQ = FNMS(KP900968867, TP, T1);
|
||
|
TT = FNMS(KP974927912, TS, TQ);
|
||
|
T14 = FMA(KP974927912, TS, TQ);
|
||
|
TY = FNMS(KP900968867, TX, Tt);
|
||
|
T10 = FNMS(KP801937735, TZ, TC);
|
||
|
T11 = FMA(KP974927912, T10, TY);
|
||
|
T17 = FNMS(KP974927912, T10, TY);
|
||
|
{
|
||
|
E TN, TU, TV, T12;
|
||
|
TN = W[2];
|
||
|
TU = TN * TT;
|
||
|
TV = W[3];
|
||
|
T12 = TV * TT;
|
||
|
cr[WS(rs, 2)] = FNMS(TV, T11, TU);
|
||
|
ci[WS(rs, 2)] = FMA(TN, T11, T12);
|
||
|
}
|
||
|
{
|
||
|
E T13, T15, T16, T18;
|
||
|
T13 = W[8];
|
||
|
T15 = T13 * T14;
|
||
|
T16 = W[9];
|
||
|
T18 = T16 * T14;
|
||
|
cr[WS(rs, 5)] = FNMS(T16, T17, T15);
|
||
|
ci[WS(rs, 5)] = FMA(T13, T17, T18);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
E T1f, T1q, T1n, T1t, T1c, T1k, T1m;
|
||
|
T1c = FNMS(KP900968867, T1b, T1);
|
||
|
T1f = FNMS(KP974927912, T1e, T1c);
|
||
|
T1q = FMA(KP974927912, T1e, T1c);
|
||
|
T1k = FNMS(KP900968867, T1j, Tt);
|
||
|
T1m = FMA(KP801937735, T1l, TB);
|
||
|
T1n = FMA(KP974927912, T1m, T1k);
|
||
|
T1t = FNMS(KP974927912, T1m, T1k);
|
||
|
{
|
||
|
E T19, T1g, T1h, T1o;
|
||
|
T19 = W[0];
|
||
|
T1g = T19 * T1f;
|
||
|
T1h = W[1];
|
||
|
T1o = T1h * T1f;
|
||
|
cr[WS(rs, 1)] = FNMS(T1h, T1n, T1g);
|
||
|
ci[WS(rs, 1)] = FMA(T19, T1n, T1o);
|
||
|
}
|
||
|
{
|
||
|
E T1p, T1r, T1s, T1u;
|
||
|
T1p = W[10];
|
||
|
T1r = T1p * T1q;
|
||
|
T1s = W[11];
|
||
|
T1u = T1s * T1q;
|
||
|
cr[WS(rs, 6)] = FNMS(T1s, T1t, T1r);
|
||
|
ci[WS(rs, 6)] = FMA(T1p, T1t, T1u);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 7 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 18, 12, 54, 0 } };
|
||
|
|
||
|
void X(codelet_hb_7) (planner *p) {
|
||
|
X(khc2hc_register) (p, hb_7, &desc);
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -dif -name hb_7 -include rdft/scalar/hb.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 72 FP additions, 60 FP multiplications,
|
||
|
* (or, 36 additions, 24 multiplications, 36 fused multiply/add),
|
||
|
* 36 stack variables, 6 constants, and 28 memory accesses
|
||
|
*/
|
||
|
#include "rdft/scalar/hb.h"
|
||
|
|
||
|
static void hb_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
|
||
|
{
|
||
|
DK(KP222520933, +0.222520933956314404288902564496794759466355569);
|
||
|
DK(KP900968867, +0.900968867902419126236102319507445051165919162);
|
||
|
DK(KP623489801, +0.623489801858733530525004884004239810632274731);
|
||
|
DK(KP781831482, +0.781831482468029808708444526674057750232334519);
|
||
|
DK(KP974927912, +0.974927912181823607018131682993931217232785801);
|
||
|
DK(KP433883739, +0.433883739117558120475768332848358754609990728);
|
||
|
{
|
||
|
INT m;
|
||
|
for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
|
||
|
E T1, T4, T7, Ta, Tx, TI, TV, TQ, TE, Tm, Tb, Te, Th, Tk, Tq;
|
||
|
E TF, TR, TU, TJ, Tt;
|
||
|
{
|
||
|
E Tu, Tw, Tv, T2, T3;
|
||
|
T1 = cr[0];
|
||
|
T2 = cr[WS(rs, 1)];
|
||
|
T3 = ci[0];
|
||
|
T4 = T2 + T3;
|
||
|
Tu = T2 - T3;
|
||
|
{
|
||
|
E T5, T6, T8, T9;
|
||
|
T5 = cr[WS(rs, 2)];
|
||
|
T6 = ci[WS(rs, 1)];
|
||
|
T7 = T5 + T6;
|
||
|
Tw = T5 - T6;
|
||
|
T8 = cr[WS(rs, 3)];
|
||
|
T9 = ci[WS(rs, 2)];
|
||
|
Ta = T8 + T9;
|
||
|
Tv = T8 - T9;
|
||
|
}
|
||
|
Tx = FMA(KP433883739, Tu, KP974927912 * Tv) - (KP781831482 * Tw);
|
||
|
TI = FMA(KP781831482, Tu, KP974927912 * Tw) + (KP433883739 * Tv);
|
||
|
TV = FNMS(KP781831482, Tv, KP974927912 * Tu) - (KP433883739 * Tw);
|
||
|
TQ = FMA(KP623489801, Ta, T1) + FNMA(KP900968867, T7, KP222520933 * T4);
|
||
|
TE = FMA(KP623489801, T4, T1) + FNMA(KP900968867, Ta, KP222520933 * T7);
|
||
|
Tm = FMA(KP623489801, T7, T1) + FNMA(KP222520933, Ta, KP900968867 * T4);
|
||
|
}
|
||
|
{
|
||
|
E Tp, Tn, To, Tc, Td;
|
||
|
Tb = ci[WS(rs, 6)];
|
||
|
Tc = ci[WS(rs, 5)];
|
||
|
Td = cr[WS(rs, 6)];
|
||
|
Te = Tc - Td;
|
||
|
Tp = Tc + Td;
|
||
|
{
|
||
|
E Tf, Tg, Ti, Tj;
|
||
|
Tf = ci[WS(rs, 4)];
|
||
|
Tg = cr[WS(rs, 5)];
|
||
|
Th = Tf - Tg;
|
||
|
Tn = Tf + Tg;
|
||
|
Ti = ci[WS(rs, 3)];
|
||
|
Tj = cr[WS(rs, 4)];
|
||
|
Tk = Ti - Tj;
|
||
|
To = Ti + Tj;
|
||
|
}
|
||
|
Tq = FNMS(KP974927912, To, KP781831482 * Tn) - (KP433883739 * Tp);
|
||
|
TF = FMA(KP781831482, Tp, KP974927912 * Tn) + (KP433883739 * To);
|
||
|
TR = FMA(KP433883739, Tn, KP781831482 * To) - (KP974927912 * Tp);
|
||
|
TU = FMA(KP623489801, Tk, Tb) + FNMA(KP900968867, Th, KP222520933 * Te);
|
||
|
TJ = FMA(KP623489801, Te, Tb) + FNMA(KP900968867, Tk, KP222520933 * Th);
|
||
|
Tt = FMA(KP623489801, Th, Tb) + FNMA(KP222520933, Tk, KP900968867 * Te);
|
||
|
}
|
||
|
cr[0] = T1 + T4 + T7 + Ta;
|
||
|
ci[0] = Tb + Te + Th + Tk;
|
||
|
{
|
||
|
E Tr, Ty, Tl, Ts;
|
||
|
Tr = Tm - Tq;
|
||
|
Ty = Tt - Tx;
|
||
|
Tl = W[6];
|
||
|
Ts = W[7];
|
||
|
cr[WS(rs, 4)] = FNMS(Ts, Ty, Tl * Tr);
|
||
|
ci[WS(rs, 4)] = FMA(Tl, Ty, Ts * Tr);
|
||
|
}
|
||
|
{
|
||
|
E TY, T10, TX, TZ;
|
||
|
TY = TQ + TR;
|
||
|
T10 = TV + TU;
|
||
|
TX = W[2];
|
||
|
TZ = W[3];
|
||
|
cr[WS(rs, 2)] = FNMS(TZ, T10, TX * TY);
|
||
|
ci[WS(rs, 2)] = FMA(TX, T10, TZ * TY);
|
||
|
}
|
||
|
{
|
||
|
E TA, TC, Tz, TB;
|
||
|
TA = Tm + Tq;
|
||
|
TC = Tx + Tt;
|
||
|
Tz = W[4];
|
||
|
TB = W[5];
|
||
|
cr[WS(rs, 3)] = FNMS(TB, TC, Tz * TA);
|
||
|
ci[WS(rs, 3)] = FMA(Tz, TC, TB * TA);
|
||
|
}
|
||
|
{
|
||
|
E TM, TO, TL, TN;
|
||
|
TM = TE + TF;
|
||
|
TO = TJ - TI;
|
||
|
TL = W[10];
|
||
|
TN = W[11];
|
||
|
cr[WS(rs, 6)] = FNMS(TN, TO, TL * TM);
|
||
|
ci[WS(rs, 6)] = FMA(TL, TO, TN * TM);
|
||
|
}
|
||
|
{
|
||
|
E TS, TW, TP, TT;
|
||
|
TS = TQ - TR;
|
||
|
TW = TU - TV;
|
||
|
TP = W[8];
|
||
|
TT = W[9];
|
||
|
cr[WS(rs, 5)] = FNMS(TT, TW, TP * TS);
|
||
|
ci[WS(rs, 5)] = FMA(TP, TW, TT * TS);
|
||
|
}
|
||
|
{
|
||
|
E TG, TK, TD, TH;
|
||
|
TG = TE - TF;
|
||
|
TK = TI + TJ;
|
||
|
TD = W[0];
|
||
|
TH = W[1];
|
||
|
cr[WS(rs, 1)] = FNMS(TH, TK, TD * TG);
|
||
|
ci[WS(rs, 1)] = FMA(TD, TK, TH * TG);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const tw_instr twinstr[] = {
|
||
|
{ TW_FULL, 1, 7 },
|
||
|
{ TW_NEXT, 1, 0 }
|
||
|
};
|
||
|
|
||
|
static const hc2hc_desc desc = { 7, "hb_7", twinstr, &GENUS, { 36, 24, 36, 0 } };
|
||
|
|
||
|
void X(codelet_hb_7) (planner *p) {
|
||
|
X(khc2hc_register) (p, hb_7, &desc);
|
||
|
}
|
||
|
#endif
|