mirror of
https://github.com/tildearrow/furnace.git
synced 2024-12-04 18:27:25 +00:00
361 lines
11 KiB
C
361 lines
11 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/* This file was automatically generated --- DO NOT EDIT */
|
||
|
/* Generated on Tue Sep 14 10:44:24 EDT 2021 */
|
||
|
|
||
|
#include "dft/codelet-dft.h"
|
||
|
|
||
|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 80 FP additions, 56 FP multiplications,
|
||
|
* (or, 24 additions, 0 multiplications, 56 fused multiply/add),
|
||
|
* 41 stack variables, 10 constants, and 36 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP954188894, +0.954188894138671133499268364187245676532219158);
|
||
|
DK(KP363970234, +0.363970234266202361351047882776834043890471784);
|
||
|
DK(KP852868531, +0.852868531952443209628250963940074071936020296);
|
||
|
DK(KP492403876, +0.492403876506104029683371512294761506835321626);
|
||
|
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DK(KP777861913, +0.777861913430206160028177977318626690410586096);
|
||
|
DK(KP839099631, +0.839099631177280011763127298123181364687434283);
|
||
|
DK(KP176326980, +0.176326980708464973471090386868618986121633062);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) {
|
||
|
E T5, TL, Tm, Tl, T1f, TM, Ta, T1c, TF, TW, TI, TX, Tf, T1d, Ts;
|
||
|
E TZ, Tx, T10;
|
||
|
{
|
||
|
E T1, T2, T3, T4;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 3)];
|
||
|
T3 = ri[WS(is, 6)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = T1 + T4;
|
||
|
TL = FNMS(KP500000000, T4, T1);
|
||
|
Tm = T3 - T2;
|
||
|
}
|
||
|
{
|
||
|
E Th, Ti, Tj, Tk;
|
||
|
Th = ii[0];
|
||
|
Ti = ii[WS(is, 3)];
|
||
|
Tj = ii[WS(is, 6)];
|
||
|
Tk = Ti + Tj;
|
||
|
Tl = FNMS(KP500000000, Tk, Th);
|
||
|
T1f = Th + Tk;
|
||
|
TM = Ti - Tj;
|
||
|
}
|
||
|
{
|
||
|
E T6, Tz, T9, TE, TC, TH, TD, TG;
|
||
|
T6 = ri[WS(is, 1)];
|
||
|
Tz = ii[WS(is, 1)];
|
||
|
{
|
||
|
E T7, T8, TA, TB;
|
||
|
T7 = ri[WS(is, 4)];
|
||
|
T8 = ri[WS(is, 7)];
|
||
|
T9 = T7 + T8;
|
||
|
TE = T7 - T8;
|
||
|
TA = ii[WS(is, 4)];
|
||
|
TB = ii[WS(is, 7)];
|
||
|
TC = TA + TB;
|
||
|
TH = TB - TA;
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
T1c = Tz + TC;
|
||
|
TD = FNMS(KP500000000, TC, Tz);
|
||
|
TF = FNMS(KP866025403, TE, TD);
|
||
|
TW = FMA(KP866025403, TE, TD);
|
||
|
TG = FNMS(KP500000000, T9, T6);
|
||
|
TI = FNMS(KP866025403, TH, TG);
|
||
|
TX = FMA(KP866025403, TH, TG);
|
||
|
}
|
||
|
{
|
||
|
E Tb, Tt, Te, Tw, Tr, Tu, To, Tv;
|
||
|
Tb = ri[WS(is, 2)];
|
||
|
Tt = ii[WS(is, 2)];
|
||
|
{
|
||
|
E Tc, Td, Tp, Tq;
|
||
|
Tc = ri[WS(is, 5)];
|
||
|
Td = ri[WS(is, 8)];
|
||
|
Te = Tc + Td;
|
||
|
Tw = Td - Tc;
|
||
|
Tp = ii[WS(is, 5)];
|
||
|
Tq = ii[WS(is, 8)];
|
||
|
Tr = Tp - Tq;
|
||
|
Tu = Tp + Tq;
|
||
|
}
|
||
|
Tf = Tb + Te;
|
||
|
T1d = Tt + Tu;
|
||
|
To = FNMS(KP500000000, Te, Tb);
|
||
|
Ts = FMA(KP866025403, Tr, To);
|
||
|
TZ = FNMS(KP866025403, Tr, To);
|
||
|
Tv = FNMS(KP500000000, Tu, Tt);
|
||
|
Tx = FMA(KP866025403, Tw, Tv);
|
||
|
T10 = FNMS(KP866025403, Tw, Tv);
|
||
|
}
|
||
|
{
|
||
|
E T1e, Tg, T1b, T1i, T1g, T1h;
|
||
|
T1e = T1c - T1d;
|
||
|
Tg = Ta + Tf;
|
||
|
T1b = FNMS(KP500000000, Tg, T5);
|
||
|
ro[0] = T5 + Tg;
|
||
|
ro[WS(os, 3)] = FMA(KP866025403, T1e, T1b);
|
||
|
ro[WS(os, 6)] = FNMS(KP866025403, T1e, T1b);
|
||
|
T1i = Tf - Ta;
|
||
|
T1g = T1c + T1d;
|
||
|
T1h = FNMS(KP500000000, T1g, T1f);
|
||
|
io[WS(os, 3)] = FMA(KP866025403, T1i, T1h);
|
||
|
io[0] = T1f + T1g;
|
||
|
io[WS(os, 6)] = FNMS(KP866025403, T1i, T1h);
|
||
|
}
|
||
|
{
|
||
|
E Tn, TN, TK, TS, TQ, TU, TR, TT;
|
||
|
Tn = FMA(KP866025403, Tm, Tl);
|
||
|
TN = FMA(KP866025403, TM, TL);
|
||
|
{
|
||
|
E Ty, TJ, TO, TP;
|
||
|
Ty = FNMS(KP176326980, Tx, Ts);
|
||
|
TJ = FNMS(KP839099631, TI, TF);
|
||
|
TK = FNMS(KP777861913, TJ, Ty);
|
||
|
TS = FMA(KP777861913, TJ, Ty);
|
||
|
TO = FMA(KP176326980, Ts, Tx);
|
||
|
TP = FMA(KP839099631, TF, TI);
|
||
|
TQ = FMA(KP777861913, TP, TO);
|
||
|
TU = FNMS(KP777861913, TP, TO);
|
||
|
}
|
||
|
io[WS(os, 1)] = FNMS(KP984807753, TK, Tn);
|
||
|
ro[WS(os, 1)] = FMA(KP984807753, TQ, TN);
|
||
|
TR = FNMS(KP492403876, TQ, TN);
|
||
|
ro[WS(os, 4)] = FMA(KP852868531, TS, TR);
|
||
|
ro[WS(os, 7)] = FNMS(KP852868531, TS, TR);
|
||
|
TT = FMA(KP492403876, TK, Tn);
|
||
|
io[WS(os, 7)] = FNMS(KP852868531, TU, TT);
|
||
|
io[WS(os, 4)] = FMA(KP852868531, TU, TT);
|
||
|
}
|
||
|
{
|
||
|
E TV, T17, T12, T1a, T16, T18, T13, T19;
|
||
|
TV = FNMS(KP866025403, TM, TL);
|
||
|
T17 = FNMS(KP866025403, Tm, Tl);
|
||
|
{
|
||
|
E TY, T11, T14, T15;
|
||
|
TY = FMA(KP176326980, TX, TW);
|
||
|
T11 = FNMS(KP363970234, T10, TZ);
|
||
|
T12 = FNMS(KP954188894, T11, TY);
|
||
|
T1a = FMA(KP954188894, T11, TY);
|
||
|
T14 = FNMS(KP176326980, TW, TX);
|
||
|
T15 = FMA(KP363970234, TZ, T10);
|
||
|
T16 = FNMS(KP954188894, T15, T14);
|
||
|
T18 = FMA(KP954188894, T15, T14);
|
||
|
}
|
||
|
ro[WS(os, 2)] = FMA(KP984807753, T12, TV);
|
||
|
io[WS(os, 2)] = FNMS(KP984807753, T18, T17);
|
||
|
T13 = FNMS(KP492403876, T12, TV);
|
||
|
ro[WS(os, 5)] = FNMS(KP852868531, T16, T13);
|
||
|
ro[WS(os, 8)] = FMA(KP852868531, T16, T13);
|
||
|
T19 = FMA(KP492403876, T18, T17);
|
||
|
io[WS(os, 5)] = FNMS(KP852868531, T1a, T19);
|
||
|
io[WS(os, 8)] = FMA(KP852868531, T1a, T19);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 9, "n1_9", { 24, 0, 56, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_9) (planner *p) { X(kdft_register) (p, n1_9, &desc);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 9 -name n1_9 -include dft/scalar/n.h */
|
||
|
|
||
|
/*
|
||
|
* This function contains 80 FP additions, 40 FP multiplications,
|
||
|
* (or, 60 additions, 20 multiplications, 20 fused multiply/add),
|
||
|
* 39 stack variables, 8 constants, and 36 memory accesses
|
||
|
*/
|
||
|
#include "dft/scalar/n.h"
|
||
|
|
||
|
static void n1_9(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
|
||
|
{
|
||
|
DK(KP939692620, +0.939692620785908384054109277324731469936208134);
|
||
|
DK(KP342020143, +0.342020143325668733044099614682259580763083368);
|
||
|
DK(KP984807753, +0.984807753012208059366743024589523013670643252);
|
||
|
DK(KP173648177, +0.173648177666930348851716626769314796000375677);
|
||
|
DK(KP642787609, +0.642787609686539326322643409907263432907559884);
|
||
|
DK(KP766044443, +0.766044443118978035202392650555416673935832457);
|
||
|
DK(KP500000000, +0.500000000000000000000000000000000000000000000);
|
||
|
DK(KP866025403, +0.866025403784438646763723170752936183471402627);
|
||
|
{
|
||
|
INT i;
|
||
|
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(36, is), MAKE_VOLATILE_STRIDE(36, os)) {
|
||
|
E T5, TO, Th, Tk, T1g, TR, Ta, T1c, Tq, TW, Tv, TX, Tf, T1d, TB;
|
||
|
E T10, TG, TZ;
|
||
|
{
|
||
|
E T1, T2, T3, T4;
|
||
|
T1 = ri[0];
|
||
|
T2 = ri[WS(is, 3)];
|
||
|
T3 = ri[WS(is, 6)];
|
||
|
T4 = T2 + T3;
|
||
|
T5 = T1 + T4;
|
||
|
TO = KP866025403 * (T3 - T2);
|
||
|
Th = FNMS(KP500000000, T4, T1);
|
||
|
}
|
||
|
{
|
||
|
E TP, Ti, Tj, TQ;
|
||
|
TP = ii[0];
|
||
|
Ti = ii[WS(is, 3)];
|
||
|
Tj = ii[WS(is, 6)];
|
||
|
TQ = Ti + Tj;
|
||
|
Tk = KP866025403 * (Ti - Tj);
|
||
|
T1g = TP + TQ;
|
||
|
TR = FNMS(KP500000000, TQ, TP);
|
||
|
}
|
||
|
{
|
||
|
E T6, Ts, T9, Tr, Tp, Tt, Tm, Tu;
|
||
|
T6 = ri[WS(is, 1)];
|
||
|
Ts = ii[WS(is, 1)];
|
||
|
{
|
||
|
E T7, T8, Tn, To;
|
||
|
T7 = ri[WS(is, 4)];
|
||
|
T8 = ri[WS(is, 7)];
|
||
|
T9 = T7 + T8;
|
||
|
Tr = KP866025403 * (T8 - T7);
|
||
|
Tn = ii[WS(is, 4)];
|
||
|
To = ii[WS(is, 7)];
|
||
|
Tp = KP866025403 * (Tn - To);
|
||
|
Tt = Tn + To;
|
||
|
}
|
||
|
Ta = T6 + T9;
|
||
|
T1c = Ts + Tt;
|
||
|
Tm = FNMS(KP500000000, T9, T6);
|
||
|
Tq = Tm + Tp;
|
||
|
TW = Tm - Tp;
|
||
|
Tu = FNMS(KP500000000, Tt, Ts);
|
||
|
Tv = Tr + Tu;
|
||
|
TX = Tu - Tr;
|
||
|
}
|
||
|
{
|
||
|
E Tb, TD, Te, TC, TA, TE, Tx, TF;
|
||
|
Tb = ri[WS(is, 2)];
|
||
|
TD = ii[WS(is, 2)];
|
||
|
{
|
||
|
E Tc, Td, Ty, Tz;
|
||
|
Tc = ri[WS(is, 5)];
|
||
|
Td = ri[WS(is, 8)];
|
||
|
Te = Tc + Td;
|
||
|
TC = KP866025403 * (Td - Tc);
|
||
|
Ty = ii[WS(is, 5)];
|
||
|
Tz = ii[WS(is, 8)];
|
||
|
TA = KP866025403 * (Ty - Tz);
|
||
|
TE = Ty + Tz;
|
||
|
}
|
||
|
Tf = Tb + Te;
|
||
|
T1d = TD + TE;
|
||
|
Tx = FNMS(KP500000000, Te, Tb);
|
||
|
TB = Tx + TA;
|
||
|
T10 = Tx - TA;
|
||
|
TF = FNMS(KP500000000, TE, TD);
|
||
|
TG = TC + TF;
|
||
|
TZ = TF - TC;
|
||
|
}
|
||
|
{
|
||
|
E T1e, Tg, T1b, T1f, T1h, T1i;
|
||
|
T1e = KP866025403 * (T1c - T1d);
|
||
|
Tg = Ta + Tf;
|
||
|
T1b = FNMS(KP500000000, Tg, T5);
|
||
|
ro[0] = T5 + Tg;
|
||
|
ro[WS(os, 3)] = T1b + T1e;
|
||
|
ro[WS(os, 6)] = T1b - T1e;
|
||
|
T1f = KP866025403 * (Tf - Ta);
|
||
|
T1h = T1c + T1d;
|
||
|
T1i = FNMS(KP500000000, T1h, T1g);
|
||
|
io[WS(os, 3)] = T1f + T1i;
|
||
|
io[0] = T1g + T1h;
|
||
|
io[WS(os, 6)] = T1i - T1f;
|
||
|
}
|
||
|
{
|
||
|
E Tl, TS, TI, TN, TM, TT, TJ, TU;
|
||
|
Tl = Th + Tk;
|
||
|
TS = TO + TR;
|
||
|
{
|
||
|
E Tw, TH, TK, TL;
|
||
|
Tw = FMA(KP766044443, Tq, KP642787609 * Tv);
|
||
|
TH = FMA(KP173648177, TB, KP984807753 * TG);
|
||
|
TI = Tw + TH;
|
||
|
TN = KP866025403 * (TH - Tw);
|
||
|
TK = FNMS(KP642787609, Tq, KP766044443 * Tv);
|
||
|
TL = FNMS(KP984807753, TB, KP173648177 * TG);
|
||
|
TM = KP866025403 * (TK - TL);
|
||
|
TT = TK + TL;
|
||
|
}
|
||
|
ro[WS(os, 1)] = Tl + TI;
|
||
|
io[WS(os, 1)] = TS + TT;
|
||
|
TJ = FNMS(KP500000000, TI, Tl);
|
||
|
ro[WS(os, 7)] = TJ - TM;
|
||
|
ro[WS(os, 4)] = TJ + TM;
|
||
|
TU = FNMS(KP500000000, TT, TS);
|
||
|
io[WS(os, 4)] = TN + TU;
|
||
|
io[WS(os, 7)] = TU - TN;
|
||
|
}
|
||
|
{
|
||
|
E TV, T14, T12, T13, T17, T1a, T18, T19;
|
||
|
TV = Th - Tk;
|
||
|
T14 = TR - TO;
|
||
|
{
|
||
|
E TY, T11, T15, T16;
|
||
|
TY = FMA(KP173648177, TW, KP984807753 * TX);
|
||
|
T11 = FNMS(KP939692620, T10, KP342020143 * TZ);
|
||
|
T12 = TY + T11;
|
||
|
T13 = KP866025403 * (T11 - TY);
|
||
|
T15 = FNMS(KP984807753, TW, KP173648177 * TX);
|
||
|
T16 = FMA(KP342020143, T10, KP939692620 * TZ);
|
||
|
T17 = T15 - T16;
|
||
|
T1a = KP866025403 * (T15 + T16);
|
||
|
}
|
||
|
ro[WS(os, 2)] = TV + T12;
|
||
|
io[WS(os, 2)] = T14 + T17;
|
||
|
T18 = FNMS(KP500000000, T17, T14);
|
||
|
io[WS(os, 5)] = T13 + T18;
|
||
|
io[WS(os, 8)] = T18 - T13;
|
||
|
T19 = FNMS(KP500000000, T12, TV);
|
||
|
ro[WS(os, 8)] = T19 - T1a;
|
||
|
ro[WS(os, 5)] = T19 + T1a;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const kdft_desc desc = { 9, "n1_9", { 60, 20, 20, 0 }, &GENUS, 0, 0, 0, 0 };
|
||
|
|
||
|
void X(codelet_n1_9) (planner *p) { X(kdft_register) (p, n1_9, &desc);
|
||
|
}
|
||
|
|
||
|
#endif
|