mirror of
https://github.com/tildearrow/furnace.git
synced 2024-11-18 02:25:11 +00:00
208 lines
5.7 KiB
C
208 lines
5.7 KiB
C
|
/*
|
||
|
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
||
|
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* plans for RDFT of rank >= 2 (multidimensional) */
|
||
|
|
||
|
/* FIXME: this solver cannot strictly be applied to multidimensional
|
||
|
DHTs, since the latter are not separable...up to rnk-1 additional
|
||
|
post-processing passes may be required. See also:
|
||
|
|
||
|
R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast
|
||
|
two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986).
|
||
|
|
||
|
H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm
|
||
|
using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987).
|
||
|
*/
|
||
|
|
||
|
#include "rdft/rdft.h"
|
||
|
|
||
|
typedef struct {
|
||
|
solver super;
|
||
|
int spltrnk;
|
||
|
const int *buddies;
|
||
|
size_t nbuddies;
|
||
|
} S;
|
||
|
|
||
|
typedef struct {
|
||
|
plan_rdft super;
|
||
|
|
||
|
plan *cld1, *cld2;
|
||
|
const S *solver;
|
||
|
} P;
|
||
|
|
||
|
/* Compute multi-dimensional RDFT by applying the two cld plans
|
||
|
(lower-rnk RDFTs). */
|
||
|
static void apply(const plan *ego_, R *I, R *O)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
plan_rdft *cld1, *cld2;
|
||
|
|
||
|
cld1 = (plan_rdft *) ego->cld1;
|
||
|
cld1->apply(ego->cld1, I, O);
|
||
|
|
||
|
cld2 = (plan_rdft *) ego->cld2;
|
||
|
cld2->apply(ego->cld2, O, O);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void awake(plan *ego_, enum wakefulness wakefulness)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_awake)(ego->cld1, wakefulness);
|
||
|
X(plan_awake)(ego->cld2, wakefulness);
|
||
|
}
|
||
|
|
||
|
static void destroy(plan *ego_)
|
||
|
{
|
||
|
P *ego = (P *) ego_;
|
||
|
X(plan_destroy_internal)(ego->cld2);
|
||
|
X(plan_destroy_internal)(ego->cld1);
|
||
|
}
|
||
|
|
||
|
static void print(const plan *ego_, printer *p)
|
||
|
{
|
||
|
const P *ego = (const P *) ego_;
|
||
|
const S *s = ego->solver;
|
||
|
p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))",
|
||
|
s->spltrnk, ego->cld1, ego->cld2);
|
||
|
}
|
||
|
|
||
|
static int picksplit(const S *ego, const tensor *sz, int *rp)
|
||
|
{
|
||
|
A(sz->rnk > 1); /* cannot split rnk <= 1 */
|
||
|
if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp))
|
||
|
return 0;
|
||
|
*rp += 1; /* convert from dim. index to rank */
|
||
|
if (*rp >= sz->rnk) /* split must reduce rank */
|
||
|
return 0;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int applicable0(const solver *ego_, const problem *p_, int *rp)
|
||
|
{
|
||
|
const problem_rdft *p = (const problem_rdft *) p_;
|
||
|
const S *ego = (const S *)ego_;
|
||
|
return (1
|
||
|
&& FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk)
|
||
|
&& p->sz->rnk >= 2
|
||
|
&& picksplit(ego, p->sz, rp)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/* TODO: revise this. */
|
||
|
static int applicable(const solver *ego_, const problem *p_,
|
||
|
const planner *plnr, int *rp)
|
||
|
{
|
||
|
const S *ego = (const S *)ego_;
|
||
|
|
||
|
if (!applicable0(ego_, p_, rp)) return 0;
|
||
|
|
||
|
if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0]))
|
||
|
return 0;
|
||
|
|
||
|
if (NO_UGLYP(plnr)) {
|
||
|
/* Heuristic: if the vector stride is greater than the transform
|
||
|
sz, don't use (prefer to do the vector loop first with a
|
||
|
vrank-geq1 plan). */
|
||
|
const problem_rdft *p = (const problem_rdft *) p_;
|
||
|
|
||
|
if (p->vecsz->rnk > 0 &&
|
||
|
X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz))
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
||
|
{
|
||
|
const S *ego = (const S *) ego_;
|
||
|
const problem_rdft *p;
|
||
|
P *pln;
|
||
|
plan *cld1 = 0, *cld2 = 0;
|
||
|
tensor *sz1, *sz2, *vecszi, *sz2i;
|
||
|
int spltrnk;
|
||
|
|
||
|
static const plan_adt padt = {
|
||
|
X(rdft_solve), awake, print, destroy
|
||
|
};
|
||
|
|
||
|
if (!applicable(ego_, p_, plnr, &spltrnk))
|
||
|
return (plan *) 0;
|
||
|
|
||
|
p = (const problem_rdft *) p_;
|
||
|
X(tensor_split)(p->sz, &sz1, spltrnk, &sz2);
|
||
|
vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS);
|
||
|
sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS);
|
||
|
|
||
|
cld1 = X(mkplan_d)(plnr,
|
||
|
X(mkproblem_rdft_d)(X(tensor_copy)(sz2),
|
||
|
X(tensor_append)(p->vecsz, sz1),
|
||
|
p->I, p->O, p->kind + spltrnk));
|
||
|
if (!cld1) goto nada;
|
||
|
|
||
|
cld2 = X(mkplan_d)(plnr,
|
||
|
X(mkproblem_rdft_d)(
|
||
|
X(tensor_copy_inplace)(sz1, INPLACE_OS),
|
||
|
X(tensor_append)(vecszi, sz2i),
|
||
|
p->O, p->O, p->kind));
|
||
|
if (!cld2) goto nada;
|
||
|
|
||
|
pln = MKPLAN_RDFT(P, &padt, apply);
|
||
|
|
||
|
pln->cld1 = cld1;
|
||
|
pln->cld2 = cld2;
|
||
|
|
||
|
pln->solver = ego;
|
||
|
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
|
||
|
|
||
|
X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
|
||
|
|
||
|
return &(pln->super.super);
|
||
|
|
||
|
nada:
|
||
|
X(plan_destroy_internal)(cld2);
|
||
|
X(plan_destroy_internal)(cld1);
|
||
|
X(tensor_destroy4)(sz2, sz1, vecszi, sz2i);
|
||
|
return (plan *) 0;
|
||
|
}
|
||
|
|
||
|
static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies)
|
||
|
{
|
||
|
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
||
|
S *slv = MKSOLVER(S, &sadt);
|
||
|
slv->spltrnk = spltrnk;
|
||
|
slv->buddies = buddies;
|
||
|
slv->nbuddies = nbuddies;
|
||
|
return &(slv->super);
|
||
|
}
|
||
|
|
||
|
void X(rdft_rank_geq2_register)(planner *p)
|
||
|
{
|
||
|
static const int buddies[] = { 1, 0, -2 };
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < NELEM(buddies); ++i)
|
||
|
REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies)));
|
||
|
|
||
|
/* FIXME: Should we try more buddies? See also dft/rank-geq2. */
|
||
|
}
|